М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
students17
students17
13.10.2022 07:05 •  Геометрия

Меньшее основание равнобедренной трапеции равно 7, боковая сторона равна 26,а тангенс равен 2,4. найдите большее основание трапеции

👇
Ответ:
MorohaHaimura
MorohaHaimura
13.10.2022

1.В равнобокой трапеции АБСД, где АБ=ЦД=26, а БЦ=7 проведём высоту БК на основание АД. Тогда в треугольнике АБК, где угол К=90, а тангенс угла А = 2.4 имеем:
БК/АК=2.4 или БК=2.4*АК. По теореме Пифагора БК^2+АК^2=АБ^2.
Подставляя предыдущее равенствополучим:
(2.4*АК)^2+АК^2=АБ^2
или 6.76*АК^2=26^2=676
Отсюда
АК^2=100
АК=10.
2. Проведём высоту ЦМ на основание АД. Тогда в прямоугольнике КБЦМ КМ=БЦ=7. МД=АК=10, поскольку треугольник МЦД симметричен треугольнику КБА относительно прямой, проходящей через середины оснований равнобокой трапеции.
3. АД=АК+КМ+МД=10+7+10=27.

4,8(50 оценок)
Открыть все ответы
Ответ:
майя155
майя155
13.10.2022

Объяснение:<!--c-->

image

1. Так как дан правильный тетраедр, то независимо от данных граней искомое сечение будет являться равносторонним треугольником MNK. При построении этого сечения необходимо провести параллельные отрезки каждой стороне грани ADB, которая по определению правильного тетраэдра — равносторонний треугольник. Таким образом искомое сечение тоже является равносторонним треугольником, подобным треугольнику  ADB.

 

2. Рассмотрим рисунок грани DCB, через центр O которой мы проводим сторону сечения NK.

image

 

3. Центр равностороннего треугольника находится в точке пересечения высот, биссектрис и медиан и делит медиану (которая также является высотой и биссектрисой) в отношении 2:1, другими словами отношение большой части медианы к всей медиане 2:3.

 

4. Значит, отношение стороны сечения к ребру тетраэдра также 2:3.

 

5. Если обозначить ребро тетраэдра через a и сторону сечения через b, то ba=23  и  b=2a3.

 

6. Площадь равностороннего треугольника определяется по формулеSMNK=b2⋅3√4=4⋅a2⋅3√9⋅4=a2⋅3√9=32⋅3√9

 

7. В результате рассчётов, площадь сечения — SMNK=1⋅3√ см2.

4,4(15 оценок)
Ответ:
NIKESHNELY
NIKESHNELY
13.10.2022

Объяснение:<!--c-->

image

1. Так как дан правильный тетраедр, то независимо от данных граней искомое сечение будет являться равносторонним треугольником MNK. При построении этого сечения необходимо провести параллельные отрезки каждой стороне грани ADB, которая по определению правильного тетраэдра — равносторонний треугольник. Таким образом искомое сечение тоже является равносторонним треугольником, подобным треугольнику  ADB.

 

2. Рассмотрим рисунок грани DCB, через центр O которой мы проводим сторону сечения NK.

image

 

3. Центр равностороннего треугольника находится в точке пересечения высот, биссектрис и медиан и делит медиану (которая также является высотой и биссектрисой) в отношении 2:1, другими словами отношение большой части медианы к всей медиане 2:3.

 

4. Значит, отношение стороны сечения к ребру тетраэдра также 2:3.

 

5. Если обозначить ребро тетраэдра через a и сторону сечения через b, то ba=23  и  b=2a3.

 

6. Площадь равностороннего треугольника определяется по формулеSMNK=b2⋅3√4=4⋅a2⋅3√9⋅4=a2⋅3√9=32⋅3√9

 

7. В результате рассчётов, площадь сечения — SMNK=1⋅3√ см2.

4,4(78 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ