Пусть этот параллелограмм АВСД. СМ и ДМ - биссектрисы. АМ||СД, СМ - секущая. Накрестлежащие углы при пересечении параллельных прямых секущей равны. Угол ВМС=углу МСД. Но так как СМ биссектриса и угол МСД=ВСМ, то все эти три угла равны. Из равенства углов при основании СМ треугольника МВС следует. что этот треугольник - равнобедренный. МВ=Вс=26. Точно также доказывается равенство сторон АМ и АД треугольника АМД. Следовательно, большая сторона АВ=СД=АМ+МВ=26+26=52. -------- Замечу, что биссектриса угла параллелограмма отсекает от него равнобедренный треугольник ( иногда сюда входят продолжения сторон). Это свойство биссектрисы пригодится при решении многих задач.
Треугольник со сторонами такой длины так часто используется в задачах, что можно знать его площадь наизусть)) Это 84 см² Площадь треугольника, если известны все его стороны, можно найти по формуле Герона. ( Она есть и в учебнике, и в сети). Другой решения, который часто применяется для нахождения высоты треугольника, приведен ниже. Пусть это треугольник АВС с высотой ВН. АВ=15,ВС=13, АС=14 СН пусть будет х, тогда АН=14 -х По т.Пифагора ВН²=АВ²-АН² ВН²=В²С-НС² ⇒ АВ²-АН²= В²С-НС² 225-196+28х-х²=169-х²⇒ х=5 ВН²=169-25=144 ВН=12 S Δ=a*h:2 S (ABC)=14*12:2=84
Найти: OM
1. проведём прямую от точки М до точки С. эта прямая будет делить равнобедренный треугольник ABC на два рввных прямоугольных треугольника - ACM и BCM.
2. рассмотрим прямоугольный треугольник АСМ:
cos угла А = отношению катета АМ к гипотенузе АС
cos угла А=0,6 по условию и
АС=10 по условию,
тогда получаем отношение
6/10=АМ/10
отсуда следует, что АМ=6=МВ т.к. прямоугольные треугольники АСМ и ВСМ равны
ВА=АМ+МВ=12 - основание треугольника АВС
3. OM=радиусу окружности вписанной в равнобедренный треугольник АВС
радиус вписанной окружности в произвольном треугольнике можно найти по формуле:
где p - полупериметр, равный ½•(a+b+c)
в нашем случае:
½•(AC+CB+BA), где АС=СВ=10, ВА= 12
p=½•(10+10+12)=½•32=16
радиус вписанной окружности равен:
OM=3 см
ответ: 3 см