1. Соединим точки А и С. Н - середина отрезка АС.
Проведем прямую а - серединный перпендикуляр к отрезку АС.
2. Соединим точки В и D. К - середина отрезка BD.
Проведем прямую b - серединный перпендикуляр к отрезку BD.
О - точка пересечения прямых а и b - и есть центр поворота, отображающего отрезок АВ на CD.
Доказательство:
Так как А отображается на С при повороте вокруг центра, точки А и С должны лежать на одной окружности, значит они должны находиться на одинаковом расстоянии от центра поворота, а все точки серединного перпендикуляра к отрезку равноудалены от концов отрезка. Значит центр поворота лежит на прямой а.
Так как В отображается на D, точки В и D должны лежать на одной окружности, т.е. должны быть равноудалены от центра поворота, значит центр лежит на серединном перпендикуляре к отрезку BD на прямой b.
Так как центр поворота один, то он находится на пересечении прямых а и b.
Заметим, что если провести из любой вершины высоту, то она будет и биссектрисой и медианой одновременно. Также точка пересечения медиан будет совпадать с точкой пересечения биссектрис и высот (так как в правильном треугольнике медианы биссектрисы и высоты, проведенные из одной вершины совпадают). А медианы делятся в точке пересечения в соотношении 2 к 1, начиная от вершины. Теперь отрезок медианы от точки пресечения медиан до вершины будет радиусом описанной окружности. А отрезок медианы от точки пересечения медиан до основания (стороны, к которой проведен) будет радиусом вписанной окружности. Значит половина длины радиуса описанной окружности равна длине радиуса вписанной окружности. То есть 8:2=4 см.
ответ: радиус вписанной окружности равен 4 см.