1
с=72мм,
а=36мм
по теореме Пифагора
b =√(c^2 -a^2) =√(72^2 -36^2) =36√3
<C =90 - треугольник прямоугольный
sinA = a/c =36/72 =1/2 = sin30
<A=30
<B= 90 - <A =90-30 =60
ОТВЕТ
b =36√3 мм
<C =90
<A=30
<B=60
2
пусть боковая сторона -с
основание b =20 см
<A =<C =30 град
высота (h),опущенная на основание , боковая сторона -с и половина основания b/2
образуют прямоугольный треугольник
c =(b/2)/cos<A = (20/2)/cos30 = 10/√3/2 = 20√3/3 см
h =(b/2)*tg<A = (20/2)*tg30 = 10/√3 = 10√3/3см
ОТВЕТ
боковая сторона 20√3/3 см
высота 10√3/3см
то нетрудно заметить:
S(ABC) = S(ABP) + S(BPC)
S(BCD) = S(CPD) + S(BPC) --- видим одинаковые слагаемые)))
т.е. доказав равенство площадей треугольников АВС и ВСD,
мы докажем требуемое
треугольники АВС и ВСD имеют общую сторону...
если в каждом из этих треугольников провести высоты к этой общей стороне (ВС))),
то эти высоты окажутся равными --- как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции)))
значит и площади равны...