A1.
Sшестиугольника = 
ответ: 4
A2.
Правильный четырёхугольник - это квадрат. Так как он вписан в окружность, то диаметр окружности будет равен диагонали квадрата. Диагонали квадрата пересекаются в центре и делят его на 4 одинаковых прямоугольных равнобедренных треугольника с бок. сторонами = R ⇒ S квадрата равна площади четырех треугольников:


ответ: 1
A3.
Правильный шестиугольник состоит из 6 равносторонних треугольников, стороны которых равны a, а высоты равны радиусу R. Найдем, чему равны стороны через высоту (радиус):


Площадь одного треугольника будет равна:


Площадь шестиугольника:

ответ: 2
B1.
Пусть вписанный треугольник - ΔABC, сторона =
; описанный - ΔA₁B₁C₁, сторона - 
Для ΔA₁B₁C₁ радиус
высоты 

⇒
⇒ 


Для ΔABC радиус R =
высоты
:
⇒
⇒ 

Найдем соотношение периметров и площадей:

треугольник АВС, уголВ=105, уголС=45, уголА=180-105-45=30, против наибольшего угла лежит наибольшая сторона=АС, наименьшая высота идет к наибольшей стороне - высота ВН, треугольник ВНС прямоугольный, уголНВС=90-уголС=90-45=45, треугольник ВНС равнобедренный, СН=ВН=х, треугольник АВН прямоугольный, АН=ВН/tgA=х/(1/√3)=х√3, АС=АН+НС=х√3+х=х(√3+1), площадь=1/2*АС*ВН, 2*(√3+1)=х(√3+1), х=2=ВН
если tg не проходили тогда - треугольник АВН прямоугольный, АВ=2*ВН=2*х (ВН лежит против угла 30 =1/2 гипотенузы), АН²=АВ²-ВН²=4х²-х²=3х², АН=х√3, а далее по тексту выше