1. В прямоугольнике диагонали образуют треугольники, у которых углы при основании равны.
2. Угол BOC=AOD (как вертикальные); рассмотрим треугольник BOC: угол OBC=OCB, ВС=5 см. Т.к. в треугольнике сумма углов равна 180 градусам, то 180-60=120 гр, а 120:2=60 гр. Значит, OBC=OCB=60 гр., а треугольник BOC - равносторонний.
3. Треугольники BOC и AOD равны, т.к. угол BOC=AOD (как вертикальные), DAO=OCB=ADO=OBC (как внутренне накрест лежащие). BC=AD=BO=OC=AO=DO=5 см.
Значит, диагональ AC=DB (т.к. точка О середина пересечения диагоналей) = 10 см
ответ: AC=DB=10 cм
какая единица измерения была первой?
может быть радиан придумали раньше...
угол в 1 радиан (от слова радиус) --это такой центральный угол окружности, который вырезает из окружности дугу, равную радиусу
(вне зависимости от длины радиуса... это всегда один и тот же угол))
мне кажется, что много вычислявшие египтяне просто заметили некоторую закономерность, верную для любой окружности: если длину окружности разделить на ее диаметр, то получится всегда одно и то же число, примерно равное 3.14...
аналогичный вопрос:
почему градусов именно 360 в окружности, не 10, не 100 (что было бы логичнее при десятичной системе счисления...)