Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. Пусть перпендикуляр из В будет ВС, из М - МН. (рис.1 вложения) А, Н и С - лежат на одной прямой АС, т.к. являются точками проекции АВ на плоскость. Соединим А, С и В. ∆ АВС и ∆ АМН - прямоугольные и подобны т.к.имеют общий острый угол ( признак подобия прямоугольных треугольников). Примем АМ=2а, АВ=2а+3а=5а. Тогда k=MH:AB=2/5⇒ 5 MH=2 AB⇒ 5 MH=2•12,5=25 м MH=5 м
В условии не указано, что АВ - наклонная. Поэтому возможно, что АВ - перпендикуляр к плоскости. (рис.2 вложения) Тогда АВ=12,5, а расстояние от плоскости до точки М=AM. АВ=12,5=5 а⇒ а=12,5:5=2,5 АМ=2•2,5=5 м
В треугольнике ABC угол C 90 градусов угол A 30 градусов AB равен 36 корень из 3 найти высоту CHДан прямоугольный треугольник АСВ.Угол А = 30 гр.Катет, лежащий напротив угла в 30 гр, равен половине гипотенузы.ВС = 1/2 АВВС=18 корней из 3 AC^2 = AB^2 - BC^2AC = 54 Расмотрим тругольник СНА - прямоугольный. Катет, лежащий напротив угла в 30 гр, равен половине гипотенузы.СН = 1/2 АССН = 27 В прямоугольном треугольнике катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Значит СВ-18 корней из 3. А из теоремы Пифагора АС=54. А из треугольника АСН гипотенуза = 54, а катет против угла 30- СН = 27.
Градусная мера угла между прямыми АС1 и ВС1
<АС1В= arcsin ( 1/√3 ) = 35,2643896828°
Объяснение:
ребро куба а=1
прямая AC1 диагональ куба
прямая ВС1 диагональ грани ВВ1С1С
у куба все 6 граней квадратные
Диагональ квадрата равна d=a√2
ВС1=1√2=√2
прямая АС1 и ВС1 образует с ребром куба АВ прямоугольный треугольник Δ АВС1, где АС1 гипотенуза, ВС1 и АВ соответственно катеты.
находим по теореме Пифагора
АС1=√ВС1²+АВ²=√(√2)²+1²=√2+1=√3
диагональ АС1=√3
АВ противолежит к углу <АС1В , тогда
sin< АС1В=АВ/АС1=1/√3
Градусная мера угла между прямыми АС1 и ВС1
<АС1В= arcsin ( 1/√3 ) = 35,2643896828°