А). Высота пирамиды по Пифагору: SO=√(SB²-BO²) = √(25-81/4) =√19/2.Рассмотрим треугольник ASO и секущую FC в нем. По теореме Менелая имеем:(AF/FS)*(SK/KO)*(OC/CA)=1. Подставим имеющиеся значения, приняв отрезок ОК за Х: (1/4)*((√19/2-Х)/Х)*(1/2)=1. Отсюда Х=√19/18. Заметим, что точка К - пересечение прямых FC и SO. Итак, КО=√19/18. Тогда в треугольнике КЕО: tg(<KEO)=КО/ЕО=КО/(ВО-ВЕ)=(√19/18)/(1/2)=√19/9. В треугольнике OSD тангенс угла SDO: tg(SDO)=SO/OD или tg(SDO)=(√19/2)/(9/2)=√19/9. Итак, в треугольнике EQD углы QED и QDO при основании равны, a <QDO=<SBD в равнобедренном треугольнике ВSD. Следовательно, треугольники ВSD и EQD подобны и EQ параллельна BS. Прямая EQ принадлежит плоскости CEF, значит плоскость CEFпараллельна ребру BS, что и требовалось доказать. б). Треугольники ВSD и EQD подобны (доказано выше), поэтомуEQ/BS=DE/DB, отсюда EQ=BS*DE/DB или EQ=5*5/9=25/9.Тогда в равнобедренном треугольнике EQD высота QH=√(EQ²-(OD/2)²) или QH=√475/18=5√19/18 ≈ 1,2.
Пусть углы при осн.равны-х ,тогда тупой угол равен 4х ,медиана в равноб.треуг так же явл высотой и биссектрисой ,получается ,что треуг (который получается при делении большего высотой ,т.есть любой из них, они оба равны ) прямоуг. высота перпен.осн. значит один из углов равен 90град. следовательно на остальные 2 так же приходится 90 град .значит х+2х =90 ,тогда х=30 гдад. теперь по свойству .катеп (т.есть (медиана =а) лежащий против угла в 30 град равен половине гипотинузы (боковой стороны треуг ) значит боковая сторона=2а
Медиана делит противолежащую сторону пополам
Значит BF=AF=30см
АИ=30+30=60см
P=60+160=220см
Объяснение: