Через вершину выпуклого n-угольника проходит d = n*(n-3)/2 диагоналей. Доказать это просто: 1) Из каждой вершины выходит n-1 отрезок к остальным n-1 вершине. Но к двум соседним вершинам - это стороны, а не диагонали. Поэтому из каждой вершины выходит n-3 диагонали. Вершин всего n, поэтому получается n*(n-3) диагоналей. 2) Каждая диагональ соединяет две вершины. Если мы провели диагональ АС, то одновременно мы провели диагональ СА. Поэтому количество диагоналей нужно разделить пополам. Получается d = n*(n-3)/2 1) n = 4, d = 4*1/2 = 2 2) n = 5, d = 5*2/2 = 5 3) n = 6, d = 6*3/2 = 9 4) n = 10, d = 10*7/2 = 35
Рассмотрим треугольник ABD. BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°. ∠ABO=∠DBO (т.к. BE - биссектриса). Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников). Следовательно, AB=BD. Т.е. треугольник ABD - равнобедренный. BO - биссектриса этого треугольника, следовательно и медиана, и высота (по третьему свойству равнобедренного треугольника). Следовательно, AO=OD=AD/2=104/2=52. Проведем отрезок ED и рассмотрим треугольник BEC. ED - медиана этого треугольника, так как делит сторону BC пополам. Площади треугольников EDC и EDB равны (по второму свойству медианы). S EDC= S EDB=(BE*OD)/2=(104*52)/2=52*52=2704 S ABE=(BE*AO)/2=(104*52)/2=2704 Т.е. S ABE=S EDC=S EDB=2704 Тогда, S ABС=3*2704=8112 AD - медиана треугольника ABC (по условию), следовательно делит треугольник на два равных по площади треугольника ABD и ACD (по второму свойству медианы). S ABD=(AD*BO)/2=S ABC/2 (104*BO)/2=8112/2 BO=8112/104=78 Рассмотрим треугольник ABO, он прямоугольный, тогда применим теорему Пифагора: AB^2=BO^2+AO^2 AB^2=78^2+52^2 AB^2=6084+2704=8788 AB=√8788=√169*52=√169*13*4=2*13*√13=26√13 BC=2AB=2*26√13=52√13 Рассмотрим треугольник AOE. OE=BE-BO=104-78=26 Так как этот треугольник тоже прямоугольный, то можно применить теорему Пифагора: AE^2=AO^2+OE^2 AE^2=52^2+26^2=2704+676=3380 AE=√3380=√20*169=√169*5*4=13*2√5=26√5 Так как BE - биссектриса, то используя ее первое свойство запишем: BC/AB=CE/AE 52√13/26√13=CE/(26√5) 2=CE/(26√5) CE=52√5 AC=AE+CE=26√5+52√5=78√5 ответ: AB=26√13, BC=52√13, AC=78√5 как то так. рисунок внизу.
30,6/sin45=AB/sin60
AB=30,6*(√3/2)/(√2/2)=15,3*√6
Объяснение: