Я не уверена с правильным ответом. ну все же
С тупых углоа В и Д я провела бисектрисы ВК и ДМ. АК = МС = 17 см, КД = ВМ = 12см.
Угол В = углу Д, то значит бисектрисы поделят их на четыре равных угла:
Уголы АВК = КВС = АДМ = СДМ.
Так как это параллелогамм, то бисектрисы будут равны и паралельные.
Посмотри угол АДМ и угол АКВ они будут равны как относительные.
Отсюда вывод, если угол АВК = углу АКВ, значит теугольник АВК равнобедренной.
Где АК = АВ = 17см.
АВ = СД = 17 см
АД = ВС = 17 + 12 = 29
Р = 17 + 17 + 29 + 29 = 92 см
в треугольнике abc, ac = cb = 8, угол acb = 120 градусов. точка m удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника abc.
найти угол между ma и плоскостью треугольника abc
точка m находится на равном расстоянии от вершин треугольника abc, следовательно, наклонные ма, мс и мв равны, их проекции также равны, а м проецируется в центр в описанное вокруг δ авс окружности.
оа = ов = ос = r
углы при а и в равны, как углы при основании равнобедренного треугольника.
∠а = ∠в = (180º-120º): 2 = 30º
по т.синусов
r = (ac: sin 30º): 2 = (8: 0,5): 2 = 8 см
δ мoa - прямоугольный, мо = 12, ов = 8, и tg ∠mao = 12/8 = 1,5
∠mao = ≈56º20 "