Вопрос №1:
1. Докажите, что равнобедреная трапеция Авсд и прямоугольник MBKД, изображенные на рисунке, равновеликие и равносоставленные
Объяснение:
Дано:
АВКD - Четырехугольник
⏢АВСD - Трапеция
▯МВКD - Прямоугольник
АВСD и МВКD - ?
Дан четырёхугольник АВКD
Опустим высоту СЕ⊥AD
ΔАВМ = ΔСКD = ΔЕСD
1. Равновеликие фигуры - фигуры, которые имеют одинаковую площадь.
1) ⏢АВСD = ΔАВМ + ΔЕСD + ☐МВСЕ
2) ▯МВКD = ΔЕСD + ΔСКD + ☐МВСЕ ⇒ ⏢
АВСD и ▯МВКD - имеют общий ☐МВСЕ и попарно одинаковые прямоугольные треугольники Δ ⇒ площадь ⏢АВСD и площадь ▯МВКD равны ⇒ РАВНОВЕЛИКИЕ
2. Две фигуры называются равносоставленными, если они могут быть разделены на одинаковое число попарно равных фигур.
Так как ⏢АВСD и ▯МВКD имеют один ☐МВСЕ и попарно одинаковые прямоугольные треугольники, у ⏢АВСD ΔАВМ = ΔЕСD, у ▯МВКD ΔЕСD = ΔСКD, то они равносоставленные
ответ: ⏢АВСD и ▯МВКD равновеликие и равносоставленные
Блин я не знаю ответа на №2 и №3 :(
Если где-то ошибка, то пишите в комменты (исправлю)
Удачи в учёбе :)
Смотри
В рисунок, данный в приложении, внесены исправления, чтобы он соответствовал данным в условии отношениям отрезков стороны АВ.
По условию АВ=6. АМ:МВ=1:2 ⇒ АВ=АМ+МВ=3 части. АМ=АВ:3=2 см, МВ=6-2=4 см. МК:КВ=1:3 ⇒ МВ=4 части, МК=4:4=1 см, КВ=4-1=3 см.
В условии не указаны равные стороны, поэтому возможны варианты решения.
а)АВ=АС, ⇒ ∠С=∠В=70° Из суммы углов треугольника ∠А=180°-2•70°=40°. По условию МР║ВС, КН║МР, АВ при них секущая. Поэтому ∠АКН=∠В=70° как соответственные. Аналогично ∠КНА=70° как соответственный углу С. Треугольник АКН~∆АВС, АН=АК, НС=КВ=4 см.
б) АВ=ВС. ∠А=∠С. Отрезки АВ будут иметь ту же величину, что в первом варианте. Но величина углов будет другой. Из суммы углов треугольника: ∠А= ∠С=(180*-70°):2=55°, ∠АКН= ∠В=70°, ∠КНА=∠С=55°. Для нахождения длины НС понадобится дополнительно провести НЕ параллельно |АВ. НЕ=КВ. По теореме синусов НЕ:sin55°=HC:sin70° ⇒ 4:0,8192=HC:0,9397, откуда получим НС≈ 4,58 см.
в) АС=ВС. Углы находятся по тому же принципу, и для нахождения НС также требуется применение т.синусов