Р = 80 см.
Объяснение:
Пусть трапеция ABCD и АВ = CD.
Середина большего основания - точка М.
Расстояние от середины большего основания до вершины тупого угла равно меньшему основанию, а большее основание в 2 раза больше меньшего основания. Следовательно, соединив середину большего основания М с вершиной тупого угла С, получим параллелограмм АВСМ, так как противоположные стороны ВС и АМ параллельны и равны, а это признак параллелограмма. Кроме того, Стороны СМ, ВС и АМ равны, следовательно, ABCD - ромб. Кроме того, АВ = CD (дано). Итак,
АВ=ВС=CD = 16см, а AD = 32см. Значит периметр трапеции равен
АВ+ВС+CD+AD = 3*16+32 = 80см.
Так как медианы точкой пересечения делятся в отношении 2:1, то:
Если медианы, проведенные к двум сторонам треугольника равны, то и сами стороны также равны. Значит, АС=ВС и треугольник АВС равнобедренный.
Рассмотрим треугольник АМС. По теореме косинусов, учитывая соотношение АС=2СМ, получим:
Следовательно стороны в два раза больше:
Тогда площадь треугольника найдем как половину произведения двух его сторон на синус угла между ними:
ответ: 2/3