Задача: Известно, что в треугольниках АВС и А1В1С1 А = А1, АВ = А1В1, АС = А1С1. На сторонах ВС и В1С1 отмечены точки К и К1, такие, что СК = С1К1. Докажите, что ∆ АВК = ∆ А1В1К1.
ответы:Δ АВС=ΔА1В1С1 по первому признаку равенства треугольников, так как ∠А=∠А1, АВ=А1В1,АС=А1С1- по условию.
В равных треугольниках соответственные стороны равны,
значит ВС=В1С1, тогда ВК=В1К1, так как КС=К1С1 - по условию.
В ΔАВК иΔА1В1К1:
АВ=А1В1, ВК=В1К1, ∠В=∠В1, значит ΔАВК =ΔА1В1К1 по первому признаку равенства треугольников, что и требовалось доказать.
Пусть AD и BE пересекаются в точке K В треугольнике ABD BE - и биссектриса и высота, то есть это равнобедренный треугольник, AB = BD, и BE - так же и медиана, то есть AK = KD; Пусть теперь точка F лежит на продолжении BA за точку A, так что CF II AD. Так как BD - медиана, то в треугольнике FBC AD - средняя линия, а CA - медиана треугольника FBC; само собой, BE так же медиана этого равнобедренного треугольника FBC (если её продолжить за точку E до пересечения с FC в точке G), то есть точка Е делит AC, как это обычно и бывает с медианами: AE/EC = 1/2; Более того, BE/EG = 2/1, то есть BE/BG = 2/3; а BK/KG = 1/1; то есть BK/BG = 1/2; отсюда BK/BE = 3/4; и KE/BE = 1/4; Таким образом, AK = KD = 48; KE = 24; BK = 72; AB = √(48^2 + 72^2) = 24√13; BC = 2*AB = 48√13; AE = √(48^2 + 24^2) = 24√5; AC = 3*AE = 72√5;
Задача: Известно, что в треугольниках АВС и А1В1С1 А = А1, АВ = А1В1, АС = А1С1. На сторонах ВС и В1С1 отмечены точки К и К1, такие, что СК = С1К1. Докажите, что ∆ АВК = ∆ А1В1К1.
ответы:Δ АВС=ΔА1В1С1 по первому признаку равенства треугольников, так как ∠А=∠А1, АВ=А1В1,АС=А1С1- по условию.
В равных треугольниках соответственные стороны равны,
значит ВС=В1С1, тогда ВК=В1К1, так как КС=К1С1 - по условию.
В ΔАВК иΔА1В1К1:
АВ=А1В1, ВК=В1К1, ∠В=∠В1, значит ΔАВК =ΔА1В1К1 по первому признаку равенства треугольников, что и требовалось доказать.
Рисунок: картинка