Часть круга, расположенная вне ромба - это два равных сегмента круга, отсекаемых от него ромбом.
Формула площади сегмента круга
S=0,5•R*•[(π•a/180)-sinα, где α - угол сегмента.
Диагонали ромба пересекаются под прямым углом.
Катет прямоугольного треугольника - среднее пропорциональное между гипотенузой и проекцией этого катета на неё.
Из ∆ АОВ диаметр ВО=√АВ•BТ=√12√3•9√3=18 см.
ТM=BM=OM=R=9
Высота прямоугольного треугольника, проведенная из прямого угла - среднее пропорциональное между отрезками, на которые она делит гипотенузу.
ОТ=√AT•BT
AТ=12√3-9√3=3√3
ОТ=√3√3•9√3=9
ОТ=9⇒ОТ= R⇒
∆ТMO-равносторонний,∠ТМО=60° ⇒ смежный ему∠ТМВ=120°
2S=81•[(π•120°/180°)-√3:2], откуда после вычислений получаем 2S=13,5•(4π-3√3) или ≈99,5 см²
1. Сторона треугольника a= 2Rcos30o.
2. 1) Знайдемо радіус вписаного кола у правильний трикутник:
2) Діагональ вписаного у коло квадрата рівна діаметру цього кола і дорівнює подвоєному радіусу:
3) Сторону квадрату знайдемо за т. Піфагора:
3.
4.В трапецию можно вписать окружность, если сумма противоположных сторон равна. то есть AD+BC=AB+CD
Опустим с вершины B трапеции на основание BK высоту BK, тогда
AK=AD-KD=28-21=7
Пусть высота трапеции BK=x, тогда
(AB)^2=(BK)^2+(AK)^2=x^2+7^2
AB=sqrt(x^2+7^2)
Так как
AD+BC=AB+CD, то
21+28=x+sqrt(x^2+7^2)
sqrt(x^2+7^2)=49-x
x^2+7^2=(49-x)^2
x^2+49=2401-98x+x^2
98x=2352
x=24, то есть высота трапеции равна 24
R=H/2
R=24/2=12 - радиус вписанной окружности