АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Прямая призма АВСА₁В₁С₁ вписана в цилиндр. АВ = ВС = 6, ∠АВС = 120°, АА₁ = 10.
Найти площадь боковой поверхности цилиндра.
ответ: 120π
Объяснение:
Если прямая призма вписана в цилиндр, то высота цилиндра равна длине бокового ребра призмы:
Н = АА₁ = 10,
а основания цилиндра описаны около оснований призмы.
ΔАВС равнобедренный, тогда
∠А = ∠С = (180° - 120°)/2 = 30°
Радиус окружности, описанной около треугольника, можно найти по формуле:
R = AB / (2 sin∠C) = 6 / (2 · 1/2) = 6
Площадь боковой поверхности цилиндра:
Sбок.цил. = 2πR · H = 2π · 6 · 10 = 120π кв. ед.