Точка М рівновіддалена від усіх сторін прямокутного трикутника і знаходиться на відстані 4 см від його площини. Знайдіть відстань від точки М до сторін трикутника, якщо його гіпотенуза на 3 см і 6 см більша від катетів.
Угол треугольника равен п / 3, противоположная ему сторона √7 см, отношение длин двух других сторон а: b = 3 . Найти большую сторону треугольника.
Решение .
Т.к. а: b = 3 , то а=3b ⇒ большая сторона а.
Рассмотрим треугольник со сторонами в, 3в, √7 и углом 60°против стороны √7 .
По т. косинусов "Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними" , имеем
√7²=b²+(3b)²-2*b*3b*cos60,
7=b²+9b²-2*b*3b*1/2,
7=10b²-3b² или 7b²=7 ⇒ b=1 . Тогда наибольшая сторона а=3b=3*1=3(cм) .
Если угол при основании 45 градусов, то прямоугольный треугольник, где высота трапеции стороной этого треугольника, а бедро трапеции гипотенузой - равнобедренный, так как второй угол этого прямоугольного треугольника тоже 90-45=45 градусов. Значит, кусочек нижнего основания трапеции, отсекаемый ее высотой равен тоже 3 см. Проведем вторую высоту трапеции, тогда получим, что высоты делят большое основание на три части - две по 3 см и одна - как малое основание 5 см. Следовательно, большое основание имеет размер 3+5+3=11 см.
Угол треугольника равен п / 3, противоположная ему сторона √7 см, отношение длин двух других сторон а: b = 3 . Найти большую сторону треугольника.
Решение .
Т.к. а: b = 3 , то а=3b ⇒ большая сторона а.
Рассмотрим треугольник со сторонами в, 3в, √7 и углом 60°против стороны √7 .
По т. косинусов "Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними" , имеем
√7²=b²+(3b)²-2*b*3b*cos60,
7=b²+9b²-2*b*3b*1/2,
7=10b²-3b² или 7b²=7 ⇒ b=1 . Тогда наибольшая сторона а=3b=3*1=3(cм) .