Решение первой задачи. Оно несколько громоздкое, может, разобравшись, сумеете дать короче.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Для решения задачи нужно сначала найти катет треугольника, который делится биссектрисой.
Вспомним свойство отрезков касательных из одной точки к окружности. Эти отрезки равны.
Обязательно сделайте рисунок. ( не получается его добавить)
Гипотенуза треугольника равна 5+12=17
В каждом катете есть отрезок, равный одному из отрезков кастательных из той же точки к гипотенузе.
Один катет равен 12+х
другой ( искомый )- равен х+5
Составим уравнение:
17²=(х+5)²+(12+х)²
289=х²+10х+25+144+24х+х²
120=2х²+34х (сократим на 2)
х²+17х-60=0
Решив уравнение через дискриминант, найдем
х=3 (второй корень отрицательный и не подходит)
Меньший катет( лежит против меньшего угла) равен 3+5=8
Больший равен 3+12=15 см
Настало время применить теорему, данную в начале задачи:
Обозначим оди из отрезков катета у, второй 8-у
у:(8-у)=15:17
17у=120-15у
32у=120
у=3,75 см - первый отрезок
8-3,75=4,25 см - второй отрезок.
Объяснение:
Пусть угол МРR=х, тогда угол АРR=2х.
Угол АРR=углу РАR=2х, так как у равнобедренного треугольника углы при основании равны.
Угол RMP и угол АМР-смежные. Сумма смежных углов равна 180°.
Угол АМР=180°-72°=108°
Рассмотрим треугольник АМР:
Угол АМР=108°; угол МАР=2х; угол МРА=х.
Сумма углов треугольника равна 180°
Решим с уравнения:
2х+х+108=180
2х+х=180-108
3х=72
х=72:3
х=24
Угол МРА=24°
Угол МАР=2*24°=48°
Угол РАR=углу APR=48°
Как я и говорила раньше сумма углов треугольника равна 180°.
Найдём угол при вершине АRP:
Угол ARP=180°-(48°+48°)=84°