1. Расстояние от центра окружности до точки, из которой проведены две касательные, делит угол A пополам. Значит угол HAO равен 30 градусам. Проведем радиус от точки O в точку касания окружности с касательной. Радиус, проведенный из центра окружности к точке касания является перпендикуляром к касательной. Получается прямоугольный треугольник HAO. В прямоугольном треугольнике катет, лежащий против угла в 30 градусов половине гипотенузы. OA - гипотенуза
Сечение куба плоскостью АВ1С даёт равносторонний треугольник, состоящий из диагоналей граней куба. Сечение куба плоскостью,проходящей через точку М и параллельной плоскости АВ1С, это тоже равносторонний треугольник со сторонами, равными половинам диагоналей граней куба. которые обозначим буквой в. Исходим из формулы площади равностороннего треугольника: S = в²√3/4. Отсюда в = √(4S/√3) = √(4*(9√3)/√3) = 6 см. Сторона куба а = √(2в²) = √(2*36) = 6√2 см. Площадь поверхности куба равна: S пов = 6а² = 6*(6√2)² = 6*72 = 432 см².
1. Расстояние от центра окружности до точки, из которой проведены две касательные, делит угол A пополам. Значит угол HAO равен 30 градусам. Проведем радиус от точки O в точку касания окружности с касательной. Радиус, проведенный из центра окружности к точке касания является перпендикуляром к касательной. Получается прямоугольный треугольник HAO. В прямоугольном треугольнике катет, лежащий против угла в 30 градусов половине гипотенузы. OA - гипотенуза
OH=1/2*6
OH=3
OH-радиус окружности
ответ:R=3
2.28 градусов
3.7