Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Вообще это надо начертить чтобы понять. В общем так как сечения перпендикулярны значит их радиусы перпендикулярны. в то же время перпендикулярны отрезок опущенный из центра шара в центр каждого сечения. Там образуется прямоугольник большая диагональ которого -это радиус шара из ег центра к точке на сфере, одна сторона -это Rпервого сечения, другая R второго сечения. площадь круга равна S=πr² площади сечений известны можем найти их радиусы R1=√11 R2=√14 Теперь найдем радиус шара из указанного выше прямоугольника(начерти, все увидишь) Rш=√(R1²+R2²)=√(11+14)=5 V=4πR³ш/3=4π*125/3=прибл 523 S=4πR²ш=4*π*25=приблизительно 314
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.