М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Gulase
Gulase
24.05.2020 23:43 •  Геометрия

По предредложеным рисункам определите класификацию стран по географическому положению​

👇
Открыть все ответы
Ответ:
ddddsfvxsf
ddddsfvxsf
24.05.2020

1 б,в

2Вход

Теоретические материалы

Планиметрия

Глава 1. Треугольники

1.3. Три признака равенства треугольников

Определение

Два треугольника, которые можно совместить наложением, называются равными.

Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.

Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, <А=<А_1

Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.

Доказательство:

Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.

3

Логин

Пароль

Вход

Теоретические материалы

Планиметрия

Глава 1. Треугольники

1.3. Три признака равенства треугольников

Определение

Два треугольника, которые можно совместить наложением, называются равными.

Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.

Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.

Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.

Доказательство:

Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.

\boxtimes

Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Сделайте чертеж, запишите, что дано и что требуется доказать, и докажите наложением треугольников.

4 х-основание

х+х+3+х+3=36

3х=30

х=10

10+3=13 см-боковые стороны

4,6(14 оценок)
Ответ:
lyazzat260703
lyazzat260703
24.05.2020

сечение пирамиды, проходящее через середины сторон ас, вс и ам, будет прямоугольником (это можно доказать, использовав теорему о трех перпендикулярах) .

площадь прямоугольника равна s = ab, где а, b - стороны прямоугольника.

одна из сторон этого прямоугольника будет средней линией треугольника авс и поэтому равна половине стороны ав, значит равна 3

другая сторона прямоугольника будет средней линией треугольника амс и поэтому равна половине стороны мс и равна 2

s = 3*2 = 6

так что площадь сечения будет 6 кв. ед. ))

4,7(31 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ