центр кола вписаного в цей трикутник це, крапка перетину бісектрис углів цього трикутника
Щоб побудувати бісектрису треба від вершини кута відкласти рівні відрізки по обох сторонах та провести за до транспортира дуги, та провести відрізок з вершини цього угла в крапку перетину цих дуг
після побудови трьох бісектрис ,креслим коло з центром в точці перетину їх за до транспортира
Трапеция ABCD. BC=2-меньшее основание, AD=4-большее основание, угол В=углу А=90 – т.к. трапеция прямоугольная. Угол D=45. Если из вершины С опустить высоту СН на основание АD, то получится прямоугольник АВСН и прямоугольный треугольник СНD. Прямоугольник АВСН: ВС=АН=2- противолежащие стороны прямоугольника, тогда НD=AD-AH=4-2=2 прямоугольный треугольник СНD, угол D=45, угол СНD=90 (СН-высота), следовательно угол HCD=180- угол D- угол СНD=180-45-90=45, отсюда треугольник СНD еще и равнобедренный, а тогда СН=НD=2 S трапеции=0,5*(ВС+AD)*CH=0,5*(2+4)*2=6
Вам немного не повезло. Ночью я решил Вашу задачу, уже дописывал (примерно 90 %), но вдруг сайт "глюканул", выбросил мой ответ и перестал меня "узнавать". Писать второй раз я уже не стал, и вот, только через 10 часов приступаю снова. AC и ВD - диагонали квадрата и равны 18*√(2). Соединим точку S отрезками с вершинами квадрата. Получится правильная четырехугольная пирамида. Плоскость ASC делит пирамиду пополам. В треугольнике ASC углы SAC и SCA равны 60° (по условию). Значит этот треугольник равносторонний и ребра SA и SC (а также и ребра SB и SD) равны 18*√(2). В грани DSC проведем апофему SE. Она разделит треугольник DSC на два прямоугольных треугольника DSE и ESC. По теореме Пифагора SE= √((18*√(2))^2-9^2)=9*√(7). Площадь треугольника DSC равна 18*9*√(7)/2=81*√(7). Угол между плоскостями определяется углом между перпендикулярами, проведенными к линии пересечения плоскостей, в данном случае к ребру SC. Но, поскольку пирамида правильная, то угол (α) между плоскостями ASC и BSC будет таким же как и между плоскостями ASC и DSC. Значит угол между плоскостями BSC и DSC будет в 2 раза больше (2*α), но вычислить его проще, поэтому будем вычислять угол (2*α). Из точек B и D проведем перпендикуляры (BN) и (DN) к ребру SC. Рассмотрим треугольник BND. Он равнобедренный, BN=DN, а BD=18*√(2). Ранее мы вычислили, что площадь треугольника DSC равна 81*√(7). Но эту же площадь можно определить как SC*DN/2, отсюда DN=2*81*√(7)/(18*√(2))=9*√(7/2). Итак, в треугольнике BND BN=DN=9*√(7/2), BD=18*√(2)=9*√(8). По теореме косинусов получаем: (9*√(7/2))^2+(9*√(7/2))^2-2*(9*√(7/2))*(9*√(7/2))cos(2*α)=(9*√(8))^2 81*7-81*7*cos(2*α)=81*8, cos(2*α)=(-1/7). Тогда sin(α)=√((1+1/7)/2)=√(4/7). α=arcsin(√(4/7)). Вот такой у меня получился ответ. Он конечно "некрасивый", но...
Объяснение:
Дуже багато треба писати
Креслиш трикутник в якому 1 кут більше 90°
центр кола вписаного в цей трикутник це, крапка перетину бісектрис углів цього трикутника
Щоб побудувати бісектрису треба від вершини кута відкласти рівні відрізки по обох сторонах та провести за до транспортира дуги, та провести відрізок з вершини цього угла в крапку перетину цих дуг
після побудови трьох бісектрис ,креслим коло з центром в точці перетину їх за до транспортира