.В правильной четырёхугольной пирамиде со стороной основания 6 см и длиной бокового ребра √(50 ) см найти косинус угла наклона бокового ребра к плоскости основания и площадь боковой поверхности.
1. Раз BAD = 90 градусов и ABD = 45 градусов, то оставшийся угол ADB= 180-90-45=45 градусов. 2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC. 3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD. 4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов. 5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180. 180-90-60=2х 30=2х х=15 градусов = угол ACD = ADC. 6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что: 45=15+CDB CDB = 30 градусов
Решение: основания трапеции не могут быть одинаковой длины, следовательно даны длины меньшего основания и боковых сторон: АВ = ВС = СЕ = 6 см, значит трапеция равнобокая, ∠ВСЕ = ∠АВС = 120°
Опустим высоты ВМ и СК. Высоты трапеции перпендикулярны основаниям ⇒ ВСКМ - прямоугольник, отсюда: МК = ВС = 6 см
Рассмотрим треугольники АВМ и ЕСК: ∠АВМ = ∠ЕСК = 120 - 90 = 30° В прямоугольном треугольнике, катет, лежащий против угла 30° равен половине гипотенузы, отсюда: АМ = АВ/2 = 6/2 = 3 см КЕ = СЕ/2 = 6/2 = 3 см
АЕ = АМ + МК + КЕ = 3 + 6 + 3 = 12 см
Средняя линия трапеции равна полусумме оснований, отсюда: РО = (ВС + АЕ)/2 = (6 + 12)/2 = 9 см
2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC.
3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD.
4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов.
5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180.
180-90-60=2х
30=2х
х=15 градусов = угол ACD = ADC.
6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что:
45=15+CDB
CDB = 30 градусов