Объяснение:
№1 ∠CBA=60°, (тк сумма углов в прямоугольном Δ 90, и 90-30=60)
∠СВЕ 60:2=30°(ВЕ-биссектрисса)
СЕ=1/2 *6=3(тк по теореме против угла в 30° лежит половина гипотенузы)
ВС=√6²-√3²=√36-√9=√27 (по теореме пифагора)
ВА=2*√27=2√27(тк против угла 30° лежит половина гипотенузы)
АС=√(2√27)²-√(√27)²=√4*27-√27=√108-√27=√81=9(по теореме пифагора)
∠ВАС=30°
№2
ΔАВС-равнобедренный(тк ∠САВ=∠СВА=45° (тк по теореме в прямоугольнов Δ сумма острых углов =90°, а 90-45=45))
СД-высота , биссектриса и медиана, тк в равнобедренном Δ высота=медиана=биссектриса⇒по правилу медианы СД=ДА=4см
АВ=2*АД (тк СД как медиана делит АВ на 2 равные части) АВ=8см
Объяснение:
№1 ∠CBA=60°, (тк сумма углов в прямоугольном Δ 90, и 90-30=60)
∠СВЕ 60:2=30°(ВЕ-биссектрисса)
СЕ=1/2 *6=3(тк по теореме против угла в 30° лежит половина гипотенузы)
ВС=√6²-√3²=√36-√9=√27 (по теореме пифагора)
ВА=2*√27=2√27(тк против угла 30° лежит половина гипотенузы)
АС=√(2√27)²-√(√27)²=√4*27-√27=√108-√27=√81=9(по теореме пифагора)
∠ВАС=30°
№2
ΔАВС-равнобедренный(тк ∠САВ=∠СВА=45° (тк по теореме в прямоугольнов Δ сумма острых углов =90°, а 90-45=45))
СД-высота , биссектриса и медиана, тк в равнобедренном Δ высота=медиана=биссектриса⇒по правилу медианы СД=ДА=4см
АВ=2*АД (тк СД как медиана делит АВ на 2 равные части) АВ=8см
Найдём 3 сторону x^2=5^2+12^2
x^2=169
x=13
За формулой (которую я нашла в интернете)
R={(p-a)(p-b)(p-c)/p}
{}- корень , p- полупериметр
p=(12+13+5)/2=15 см
R={(15-13)(15-12)(15-5)/15}
R=2
ответ : 2 см