Отрезки касательных, проведенных к окружности равны. Пусть дан тр-к АВС, т. касания стороны ВС с окружностью т.Д; стороны АС - т.Е; стороны АВ - т.К; по условию АС=29 см; ВД=1 см; ДС=24 см; рассм. т.С, из нее проведены касательные к окружности СД и СЕ, они равны 24 см; АС=29 см; значит АЕ=29-24=5 см; рассм. касательные, проведенные к окружности из т.А - АЕ=АК=5 см; рассм. касательные, проведенные из т.В - ВК=ВД=1см; отсюда АВ=АК+ВК=5+1=6 см; СВ=24+1=25 см; и АС=29 см; значит Р=6+25+29=60см - это ответ.
Высота делит равнобедренный треугольник на два равных прямоугольных треугольника. При этом высота является катетом, второй катет является половиной основания, а боковая сторона это гипотенуза. Ну возьмём один из этих треугольников. Если внимательно посмотреть на его стороны, то можно увидеть, что катет равен половине гипотенузы. А это уже известное свойство! Согласно ему катет, который лежит против угла в 30 градусов, равен половине гипотенузы. То есть, если катет равен половине этой гипотенузы, значит угол против него равен 30 градусам. Ну и вот, раз треугольник равнобедренный, то углы при его основании равны. Значит, углы треугольника- 30 и 30 и угол при вершине. Чтобы его найти, вычтем сумму известных углов из 180: 180-(30+30)=120. Значит, углы треуг. 30,30 и 120.
Пусть дан тр-к АВС, т. касания стороны ВС с окружностью т.Д;
стороны АС - т.Е; стороны АВ - т.К; по условию АС=29 см; ВД=1 см;
ДС=24 см;
рассм. т.С, из нее проведены касательные к окружности СД и СЕ, они равны 24 см; АС=29 см; значит АЕ=29-24=5 см;
рассм. касательные, проведенные к окружности из т.А - АЕ=АК=5 см;
рассм. касательные, проведенные из т.В - ВК=ВД=1см;
отсюда АВ=АК+ВК=5+1=6 см; СВ=24+1=25 см; и АС=29 см; значит
Р=6+25+29=60см - это ответ.