Рассмотрим вариант, когда прямая имеет угловой коэффициент k>0, тогда она наклонена к положительному направлению оси ОХ под острым углом. Из чертежа видно, что угол наклона не может быть тупым, т.к. тогда S треугольника будет больше 3 .
От координатного угла отсекается ΔВОК , площадь которого S=3. Это прямоугольный треугольник, его площадь равна половине произведения катетов., то есть .
Пусть ОК=3 ед. , а ОВ=2 ед. , тогда .
Точка В в этом случае будет иметь координаты В(2,0), а точка К(0,-3) .
Подставим в уравнение прямой координаты точки А(4,3) и , например, В(2,0), получим:
Или можно использовать то, что точка пересечения с осью ОУ имеет координаты К(0,-3). Тогда уравнение прямой имеет вид: y=kx-3 . И в это уравнение уже подставить координаты точки А(4,3) :
Также можно было составить уравнение прямой, проходящей через две точки А и В ( или А и К) .
Расстояние от точки до прямой - длина перпендикуляра, опущенного из точки на прямую. Отрезок FB перпендикулярен плоскости квадрата AВСD, значит перпендикулярен прямым АВ, ВС и BD, лежащим в плоскости. Так как отрезок FB пересекает их, то расстояние до сторон АВ и ВС, а так же и до диагонали BD равно длине отрезка FB и равно 8 дм.
ВА⊥AD как стороны квадрата, ВА - проекция наклонной FA на плоскость АВС, значит FA⊥AD по теореме о трех перпендикулярах. Значит, FA - расстояние от точки F до прямой AD. Из ΔABF по теореме Пифагора: FA = √(AB² + FB²) = √(16 + 64) = √80 = 4√5 (дм)
ВС⊥CD как стороны квадрата, ВС - проекция наклонной FС на плоскость АВС, значит FС⊥СD по теореме о трех перпендикулярах. Значит, FС - расстояние от точки F до прямой СD. ΔАBF = ΔCBF по двум катетам (АВ = ВС как стороны квадрата, BF - общая), тогда FC = FA = 4√5 дм.
ВО⊥АС, так как диагонали квадрата перпендикулярны, ВО - проекция FO на плоскость АВС, значит FO⊥AC по теореме о трех перпендикулярах. FO - расстояние от точки F до прямой АС. ВО = BD/2 = 4√2/2 = 2√2 дм как диагональ квадрата, Из ΔFBO по теореме Пифагора: FO = √(FB² + BO²) = √(64 + 8) = √72 = 6√2 дм
Рассмотрим вариант, когда прямая имеет угловой коэффициент k>0, тогда она наклонена к положительному направлению оси ОХ под острым углом. Из чертежа видно, что угол наклона не может быть тупым, т.к. тогда S треугольника будет больше 3 .
От координатного угла отсекается ΔВОК , площадь которого S=3. Это прямоугольный треугольник, его площадь равна половине произведения катетов., то есть
.
Пусть ОК=3 ед. , а ОВ=2 ед. , тогда
.
Точка В в этом случае будет иметь координаты В(2,0), а точка К(0,-3) .
Подставим в уравнение прямой
координаты точки А(4,3) и , например, В(2,0), получим:
Или можно использовать то, что точка пересечения с осью ОУ имеет координаты К(0,-3). Тогда уравнение прямой имеет вид: y=kx-3 . И в это уравнение уже подставить координаты точки А(4,3) :
Также можно было составить уравнение прямой, проходящей через две точки А и В ( или А и К) .
Смотри рисунок.