Пусть х см- 1 катет, а у см- 2 катет. Тогда решим систему уравнений: 1) {х+у=11 {х^2+у^2=61 2) {х^2+2*х*у+у^2=121 {х^2+у^2=61 3) {-х^2-2*х*у-у^2=-121 {х^2+у^2=61 4) {-2*х*у=-60 {х+у=11 5) {х*у=30 {х+у=11 6) {х=11-у {(11-у)*у=30 •Рассмотрим отдельно вот это уравнение: (11-у)*у=30 -у^2+11у-30=0 D=121-4*(-1)*30=441 y1=(-11+21)/2=5 y2=(-11-21)/2=-16 Второй корень не подходит по смыслу задачи (катет не может быть отрецателен). Значит, вернёмся к системе: 7) {у=5 {х=6 Итак, катеты найдены, теперь по формуле площади прямоугольного треугольника: S=1/2*a*b, где a и b - его катеты. S=1/2*5*6=15 см^2. ответ: 15 см^2.
1. Раз BAD = 90 градусов и ABD = 45 градусов, то оставшийся угол ADB= 180-90-45=45 градусов. 2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC. 3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD. 4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов. 5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180. 180-90-60=2х 30=2х х=15 градусов = угол ACD = ADC. 6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что: 45=15+CDB CDB = 30 градусов
найдём градусную меру всех углов многоугольника
180*(13-2) =1980*
три угла прямые , их отнимем
1980-90*3=1710
найдём градусную меру остальных
1710: 10=171 *