В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
Можно, не будучи знакомым с этим свойством равнобедренной трапеции, самостоятельно прийти к этому выводу, опустив две высоты из вершин тупых углов трапеции и сделав необходимые расчеты.
Средняя линия равна 16, следовательно, сумма оснований равна
ВС+АD=16·2=32
Большее основание равно
AD=32-BC=32-6=26
Отрезок НD- меньший из двух, на которые высота делит основание АД.
Полуразность оснований равна
HD=(26-6):2=10
ответ: Отрезок HD=10
ответ:
объяснение:
25) признак равенства по гипотенузе и острому углу.если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
признак равенства прямоугольных треугольников по двум катетам.если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
признак равенства прямоугольных треугольников по катету и гипотенузе.если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
признак равенства прямоугольных треугольников по катету и острому углу.если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
26)если из точки вне прямой опустить перпендикуляр и провести наклонную, то получится прямоугольный треугольник. а в любом треугольнике против большего угла лежит большая сторона. прямой угол в прямоугольном треугольнике естественно больше любого острого угла, значит и сторона (гипотенуза) лежащая против него будет всегда больше, чем любой из катетов, лежащих против острых углов. для любых углов перпендикуляр будет меньше любой наклонной проведенной из той же точки.