Объяснение:
ОА⊥DА по свойству касательной , ∠DАО=90°.
∠х+∠ВАО=90° и ∠х=∠ВАО=45°
ΔВАО-равнобедренный, т.к. ОВ=ОА , поэтому углы при основании равны ∠В=∠ВАО=45°, тогда центральный угол ∠ВОА=180°-2*45°=90°⇒ дуга ∪АВ=90°.
"Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами"⇒∠х=90°:2=45°
2) "Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами"⇒ ∠Р=(∪АВ-∪АС):2
25°=(80°-х):2
50°=80°-х
х=30°
3)∠МАС=75°, ∠РВС=60° . По правилу об угле, образованном касательной и хордой, проходящей через точку касания ⇒∪АС=150° и ∪ВС=120°. Значит на ∪АВ остается ∪АВ=360°-150°-120°=90°.
∠С-вписанный и опирается на ∪АВ⇒∠С=45°.
ДАЛЬШЕ МОЖНО ТАК.......По т. о смежных углах ∠РАС=180°-75°=105° и ∠РВС=180°-60°=120°
Сумма углов четырехугольника 360° , х=360°-105°-45°-120°=90°
ИЛИ МОЖНО ТАК..........Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами⇒ х= ((120°+150°)-90° ):2=90°
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4