дано: паралелограм ABCD построен на векторах а и b как на сторонах. Известно, что модуль вектора а равен 3, модуль вектора b равен 5, модуль векторов а+b равен 7.
найти: величину угла между векторами a и b(в градусах)
Объяснение:
Дано: ABCD- параллелограмм, построен на векторах а и b как на сторонах. Известно, что модуль вектора| а |=3, | b|=5, | а+b|=7.
Найти: величину угла между векторами a и b
Решение
Пусть АВ=а (вектора), ВС=b(вектора). Тогда суммой двух векторов, по правилу треугольника АВ+ВС=АС (вектора). По условию АВ+ВС=а+b(вектора), поэтому
АС= а+b(вектора), а |АС|= |а+b|=7 (вектора).
В ABC вектора ВС=АД .Тогда углом между векторами а и b будет ∠ВАD=180°-∠АВС.
ΔАВС, АВ=3,ВС=5, АС=7.
По т. косинусов :
АС²=АВ²+ВС²-2*АВ*ВС*cosВ,
49=9+25-30*cosВ,
cosВ=-0,5
∠В=120 , а значит ∠ВАD=180°-120°=60°.
См. рис.1
Так как ABCD - параллелограмм, то: AO = OC; BO = OD.
По теореме о свойствах отрезков прямой, проходящей через точку пересечения диагоналей параллелограмма: OP = OM и OK = ON.
Так как ∠BOP = ∠MOD и ∠BON = ∠KOD, как вертикальные, то:
ΔВОР = ΔMOD по 1-му признаку равенства треугольников (по двум сторонам и углу между ними), то BP = MD = 7 см.
ΔBON = ΔDOK по тому же 1-му признаку равенства треугольников. Следовательно: BN = KD = 6 см.
Периметр параллелограмма АВСD:
Р = 2*(AB + AD) = 2*(16+6 + 18+7) = 2 * 47 = 94 (см)
-------------------------------
См. рис.2
Теорема о свойствах отрезков прямой, проходящей через точку пересечения диагоналей параллелограмма: Данные отрезки делятся точкой пересечения диагоналей параллелограмма пополам.
Доказательство: пусть АВСD - данный параллелограмм и EF - прямая, пересекающая параллельные стороны AD и ВС. Треугольники ВОЕ и FOD равны по второму признаку (стороне и двум прилежащим углам). В этих треугольниках:
ВО = ОD, так как О - середина диагонали АС,
Углы при вершине О равны, как вертикальные, а углы BOE и FOD равны, как внутренние накрест лежащие при параллельных АС и ВС и секущей BD. Из равенства треугольников следует равенство сторон: OE = OF, что и требовалось доказать.