Даны точки а (-2; 1),в (3; 1),с (0; -2). найдите координаты векторов ав, ас, св, отложите от начала координат векторы, равные соответственно векторам ав, ас, св.
1. Соединим точки Е и F, так как они лежат в одной грани, так же точки F и К.
A₁F = AK как половины равных ребер,
A₁F║ AK, так как лежат на противоположных сторонах прямоугольника,
∠A₁АК = 90°, ⇒ A₁FKА - прямоугольник, значит
FK ║ AA₁, а значит FK ║ (АА₁В).
Секущая плоскость (EFK) проходит через FK и пересекает плоскость (АА₁В), значит линия пересечения параллельна прямой FK.
(Теорема: Если плоскость проходит через прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой)
Проведем ЕТ ║ АА₁, тогда ЕТ ║ FK.
EFKT - искомое сечение.
АА₁ ⊥ (АВС) , FK ║ АА₁, значит FK⊥(АВС).
Так как сечение проходит через прямую, перпендикулярную плоскости основания, то оно перпендикулярно плоскости основания,
(EKF) ⊥ (АВС).
2. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
1. Рассмотрим осевое сечение конуса - треугольник АВС, он правильный. У правильного треугольника высота опущенная из точки В на сторону АС будет его медианой и биссектрисой. А если так то угол АВД=углу ДВС. Угол АВД = 30 градусов. 2. Рассмотрим треугольник ВБС. Угол Д равен 90 градусов, потому что ВД высота. Треугольник ВБС прямоугольный. За теоремой косинусов находим сторону треугольника АВС. cos углаДВС=ВД/ВС. ВС=ВД/cos углаДБС. 3. Площадь треугольника равна половине площади прямоугольника. S=(АС*ВД)/2
1. Соединим точки Е и F, так как они лежат в одной грани, так же точки F и К.
A₁F = AK как половины равных ребер,
A₁F║ AK, так как лежат на противоположных сторонах прямоугольника,
∠A₁АК = 90°, ⇒ A₁FKА - прямоугольник, значит
FK ║ AA₁, а значит FK ║ (АА₁В).
Секущая плоскость (EFK) проходит через FK и пересекает плоскость (АА₁В), значит линия пересечения параллельна прямой FK.
(Теорема: Если плоскость проходит через прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой)
Проведем ЕТ ║ АА₁, тогда ЕТ ║ FK.
EFKT - искомое сечение.
АА₁ ⊥ (АВС) , FK ║ АА₁, значит FK⊥(АВС).
Так как сечение проходит через прямую, перпендикулярную плоскости основания, то оно перпендикулярно плоскости основания,
(EKF) ⊥ (АВС).
2. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
A₁C² = AB² + AA₁² + AD²
AD = √(A₁C² - AB² - AA₁²) = √(56 - 16 - 36) = √4 = 2