1. если коэффициент пропорциональности, больше нуля и равен х, то 120=5х*6х
х²=4, откуда х=2, тогда стороны 5*2=10/см/, 6*2=12/см/
2. площадь параллелограмма вычисляется как произведение основания на высоту, чтобы найти высоты, надо площадь разделить на стороны, соответственные.
108/182=6/см/- одна высота и 108/12=9/см/ вторая.
ответ:
ас = св = ва = а ( по условию) ==> ∆авс - равносторонний
проведем через пункт с прямую, параллельную прямой el, пункт пересечения этой прямой с прямой ав обозначим м
см ll el
по т. фалеса имеем
me/eb = cl/lb = 1/4 = 2/8
также по т. фалеса:
me/ea = ck/ka = 2/1
раз ме/ев = 2/8
а ме/еа = 2/1, то ев/еа = 8/1, то есть еа составляет 1/7 часть от ав
ea = ab/7 = a/7
cl/lb = 1/4, значит lb составляет 4/5 от св
lb = 4cb/5 = 4a/5
теперь найдем el по т. косинусов :
eb = ea + ab = a/7 + a = 8a/7
lb = 4a/5
el^2 = eb^2 + lb^2 - 2*eb* lb cos (
el^2 = 64a^2/49 + 16a^2/25 - 2* 8a/7 * 4a/5 * 1/2
el^2 = 64a^2/49 + 16a^2/25 - 32a^2/35
el^2 = 1600a^2/1225 + 784a^2/1225 - 1120a^2/1225
el^2 = (1600a^2 + 784a^2 - 1120a^2)/1225
el^2 = 1264a^2/1225
el = √(1264a^2/1225) = 4a(√79)/35
объяснение:
поставь лучший ответ
Проведем высоты ВН и СМ на сторону АD. Фигура ВСМН - прямоугольник, а значит все его углы равны 90 градусов.
Треугольники АВМ и СМD - прямоугольные. Сумма углов треугольника равна 180 градусов.
Треугольник АВМ:
Угол АВН = 180 - (угол А + 90) = 180 - (36 + 90) = 180 - 126 = 54 градуса.
Угол В = 54 + 90 = 144 градуса
Треугольник СМD:
Угол DСМ = угол С - 90 = 117 - 90 = 27 градусов
Отсюда угол D = 180 - (угол DСМ + 90) = 180 - (27 + 90) = 180 - 117 = 63 градуса.
угол В = 144 градуса, угол D = 63 градуса
ответ: Асса
Объяснение: