Площадь части круга, расположенной вне ромба, состоит из площади двух сегментов ТkC и DmC (см. рисунок в приложении).
ОС - диаметр, ТО=МО - высоты ромба, прямоугольные ∆ ОТС =∆ ОМС по катету и гипотенузе. ⇒ хорды ТС=МС⇒
сегменты ТkC и DmС равны.
В прямоугольном ∆ ОТВ тангенс угла ОВТ=ОТ:ВТ=3:√3=√3. Это тангенс 60° ⇒
в прямоугольном ∆ ВОС угол ВОС=30°
Диаметр ОС=ОТ:sin30°=6 см, радиус РС=РТ=3 см.
∆ ТРС равнобедренный, ∠ТРС=180°-2•30°=120°
Площадь сегмента ТkC равна разности между площадью сектора РТkC и площадью ∆ ТРС
Площадь сектора ТРС равна 1/3 площади круга=πr²:3=9π:3=3π, т.к. угол ТРС=1/3 градусной величины круга.
S ∆ТРС по формуле S=a•b•sina:2=9√3/4
S сегмента ТkC=3π - 9√3/4
Площадь 2-х таких сегментов 6π -9√3/2 см²
60 градусов, 150 градусов, 150 градусов.
Объяснение:
Если АС равно R, то и ОА=ОС=R.
Имеем равносторонний треугольник ОАС, в котором все углы по 60 градусов, значит, угол АОС=60 градусов и дуга АС=60 градусов.
Треугольник АВС - равнобедренный, значит дуга ВС=дуге АВ
дуга ВС+дуга АВ=360-60=300 градусов
Дуга АВ=дуге ВС=300:2=150 градусов.
ответ: 60 градусов, 150 градусов, 150 градусов.