М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
PolinaGetto
PolinaGetto
17.07.2021 03:25 •  Геометрия

ЭТО ОЧЕНЬ Серединный перпендикуляр гипотенузы AB прямоугольного треугольника ABC пересекает катет AC в точке M. Известно, что AM=2MC. Найдите острые углы треугольника ABC.
2. В прямоугольном треугольнике ABC AB=24см; AC=25см; BC=7см. Найдите расстояние: а) от A до BC, б) от C до AB, в) может ли расстояние от B до AC быть равным 10см

👇
Ответ:
an2015tep071hf
an2015tep071hf
17.07.2021

Объяснение: №1. 1) Так как АМ=2МС, то пусть АМ=2х, МС=х, тогда АС= АМ+МС=х+2х=3х   2) Пусть МК- данный серединный перпендикуляр, К∈АВ, АК=КВ= с/2=0,5с, где гипотенуза АВ=с; М∈АС, МК⊥АВ    3)ΔАВС подобенΔАМК : по двум углам: ∠А-общий, ∠С=∠К=90°, значит их стороны пропорциональны АС/АК= АВ/АМ ⇒3х/0,5с = с/2х,  ⇒0,5с²=6х², ⇒х= с/√12                                                                      3) Из ΔАВС  ⇒ Sin B=AC/AB= 3x/c=3с/(с√12)= 3√12/12= √3/2, ⇒∠В=60°, тогда∠А=90°-60°=30°                                                                      №2. Раз ΔАВС-прямоугольный, тогипотенуза больше катета, ⇒АС-гипотенуза, ∠В=90°. ТО расстояние: а) от A до BC равно 24, б) от C до AB равно 7, в) может ли расстояние от B до AC быть равным 10см?- Нет, т.к. в прямоугольном ΔВМС   гипотенуза ВМ должна быть больше катета ВМ ( ВМ⊥АС)

4,6(71 оценок)
Открыть все ответы
Ответ:
billymilligaan
billymilligaan
17.07.2021

задача решается очень элегантным дополнительным построение

пусть трапеция АВСD. АС = 3; ВD = 5; AD и ВС - основания.

Через точку D проводим прямую II АС до пересечения с продолжением AD. Точка пересечения - E. Площадь треугольника ACE равна площади трапеции (у них общая высота и одинаковая средняя линяя, поскольку АЕ = AD + BC.

Отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей О. Собственно, из подобия АОD и BOC следует, что медианы из точки О в обоих треугольниках составляют одинаковые углы с основаниями, то есть  это - одна прямая, соединяющая середины оснований. Треугольник  АСЕ Тоже подобен  АОD и BOC, и поэтому медиана в нем II этому отрезку. А значит, она ему равна :). 

Итак, Площадь треугольника ACE равна площади трапеции, и в АСЕ известны 2 стороны 3 и 5 и медиана 2.  Продолжим медиану СМ за её основание М на 2 и соединим полученную точку Р с A и Е. Получим параллелограмм ACEP. Ясно из свойств параллелограма что площадь АСЕ = площадь CPE.

СРЕ - треугольник с заданными сторонами РЕ = 5, СЕ = 3, СР = 2*2 = 4.

Найти его площадь в общем случае можно по формуле Герона, но тут все просто - треугольник СРЕ прямоугольный (это просто следствие того что 9 + 16 = 25), и его площадь S = (1/2)*3*4 = 6.

 

Удивительно, ввел решение, и увидел, что задачу решили так же как и я : это приятно :)

4,4(10 оценок)
Ответ:
manshev2018
manshev2018
17.07.2021

задача решается дополнительным построением, которое полезно запомнить.

пусть трапеция АВСD. АС = 3; ВD = 5; AD и ВС - основания.

Через точку C проводим прямую II BD до пересечения с продолжением AD. Точка пересечения - E. Площадь треугольника ACE равна площади трапеции (у них общая высота и одинаковая средняя линяя, поскольку АЕ = AD + BC.

Отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей О. Собственно, из подобия АОD и BOC следует, что медианы из точки О в обоих треугольниках составляют одинаковые углы с основаниями, то есть  это - одна прямая, соединяющая середины оснований. Треугольник  АСЕ тоже подобен  АОD и BOC, и поэтому медиана в нем II этому отрезку. А значит, она ему равна (там получился параллелограмм, образованный медианой СМ треугольника ACE,  отрезком, соединяющим середины оснований и отрезками оснований) :). 

Итак, Площадь треугольника ACE равна площади трапеции, и в АСЕ известны 2 стороны 3 и 5 и медиана 2.  Продолжим медиану СМ за её основание М на 2 и соединим полученную точку Р с A и Е. Получим параллелограмм ACEP (потому что диагонали делятся пополам в точке пересечения). Ясно из свойств параллелограма что площадь АСЕ = площадь CPE.

СРЕ - треугольник с заданными сторонами СЕ = BD = 5, PЕ = AC = 3, СР = 2*CM = 4.

Найти его площадь в общем случае можно по формуле Герона, но тут все просто - треугольник СРЕ прямоугольный (это просто следствие того что 9 + 16 = 25), и его площадь S = (1/2)*3*4 = 6.

 

Удивительно, ввел решение, и увидел, что задачу решили так же как и я : это приятно :)

4,5(32 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ