2. Составьте общее уравнение прямой проходящей через точки А(-4; 3) и В(-1;2)
3. Точки ; С(2; 0); Д(0; 2) являются вершинами четырехугольника. Найдите координаты точки Р, которая является точкой пересечения диагоналей. Постройте соответствующий чертеж.
4. Точка М делит отрезок РК в отношении 9 : 3, начиная от точки Р. Найдите координаты точки Р, если точки М и К имеют соответственно координаты (-1;-3), (2; 4).
5. а) Изобразите окружность, соответвующей уравнению .
b) Определите взаимное расположение прямой у = - 8 и окружности СОЧ
ответ: V=64√5см³
Объяснение: обозначим вершины пирамиды АВСД с высотой КО и диагоналями ВД и АС. Одна диагональ делит параллелограмм на 2 равных треугольника. Пусть ВД=6см. Рассмотрим полученный ∆ВСД. В нём известны 3 стороны и мы можем найти его площадь по формуле: S=√((p-a)(p-b)(p-c)), где а сторона треугольника а р-полупериметр:
Р=3+7+6=16см; р/2=16/2=8см
S=√8((8-7)(8-6)(8-3))=√(8×1×2×5)=
=√80=8√5см²
Так как таких треугольников 2, то площадь параллелограмма=8√5×2=16√5см²
Теперь найдём объем пирамиды зная площадь основания и высоту по формуле: V=⅓×Sосн×КО=
=⅓×16√5×4=64√5/3см³