Доказательство: пусть угол abc - вписанный угол окружности с центром o, опирающийся на дугу ac. докажем, что abc=1/2 дуги ac. есть 2 возможных варианта расположения луча bo относительно угла abc 1) луч ob совпадает с одной из сторон угла abc, например со стороной bc. в этом случае дугаac меньше полуокружности, поэтому угол aoc=дуге ac. так как угол aoc - внешний угол равнобедренного треугольника abo, ф углы 1 и 2 при основании равнобедренного треугольника равны, то угол aoc=уг.1+уг.2=2 уг.1отсюда следует, что 2 угол 1=дуг.ac или угол abc=уг1=1/2 дуги ac 2) луч bo делит угол abc на два угла. в этом случае луч bo пересекает дугу ac в некоторой точке d. точка d разделяет дугу ac на две дуги: дуга ad и дуга dc. по доказанному в номере один, угол abd=1/2 дуги ad и угdbc=1/2 дуги ad+1/2 дугиdc. складывая эти равенства попарно, получаем: угол abd+dbc=1/2 дуг ad+1/2 дугdc, или угол abc=1/2 дуги ac
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12