2.Осевое сечение цилиндра- квадрат, площадь которого равна 16см (в квадрате). Чему равна пощадь основания цилиндра? 3.В каком случае сечение цилиндра плоскостью, параллельной его оси, является квадрат? 4.Сколько существует плоскостей, рассекающий данный цилиндр: а) на два равных цилиндра; б) на две равные фигуры?
КОНУС. 1.Может ли в сечении конуса плоскостью получиться равнобедренный треугольник, отличный от осевого сечения? 2.Радиус основания конуса равен 4см. осевым сечение служит прямоугольный треугольник. Найдите его площадь? 3..Высота конуса 8м, радиус основания - 6м. Найдите образующую конуса. 5.Образующая конуса равна 6м и наклонена к плоскости основания под углом 60 градусов. найдите площадь основания конуса.
Если в условии имеется в виду, что отрезок каждой длины можно использовать в четырехугольнике только один раз, то ни одного 4-угольника составить нельзя. Действительно, пусть длины сторон четырехугольника равны 2^k, 2^l, 2^m, 2^n, где 0≤k<l<m<n≤6. Тогда должно выполняться 2^k+2^l+2^m>2^n, т.к. длина ломаной всегда больше расстояния между ее конечными точками. Но 2^k+2^l+2^m≤2^(m-2)+2^(m-1)+2^m= =2^(m-2)*(1+2+4)=7*2^(m-2)<2^(m+1)≤2^n. Т.е. получается, что сумма трех меньших сторон четырехугольника меньше большей стороны. Противоречие. Т.е. четырехугольника с различными сторонами с длинами из этого списка не существует.
Если допустить, что некоторые длины сторон могут повторяться, то различных четырехугольников можно составить бесконечно много, т.к. даже со сторонами 1,1,1,1 существует бесконечное число различных ромбов.
3.В каком случае сечение цилиндра плоскостью, параллельной его оси, является квадрат?
4.Сколько существует плоскостей, рассекающий данный цилиндр:
а) на два равных цилиндра;
б) на две равные фигуры?
КОНУС.
1.Может ли в сечении конуса плоскостью получиться равнобедренный треугольник, отличный от осевого сечения?
2.Радиус основания конуса равен 4см. осевым сечение служит прямоугольный треугольник. Найдите его площадь?
3..Высота конуса 8м, радиус основания - 6м. Найдите образующую конуса.
5.Образующая конуса равна 6м и наклонена к плоскости основания под углом 60 градусов. найдите площадь основания конуса.