Точка M, равноудалена от вершин треугольника ABC, поэтому она лежит на перпендикуляре к (ABC), который восстановлен из центра (O) описанной около ΔABC окружности. Треугольник со сторонами 6, 8, 10 является египетским (10²=6²+8²), поэтому ∠B=90°, а значит центр описанной лежит на середине AC. И её радиус равен AC:2=10:2=5.
Как было сказано ранее MO⊥(ABC).
Рассмотри прямоугольный ΔAOM (∠O=90°): AO=5; AM=13. Найдём второй катет MO (расстояние от M до α) по теореме Пифагора (хотя тут опять Пифагорова тройка 5, 12, 13).
MO=√(13²-5²) = √((13+5)(13-5)) = √(18·8) = √(3²·4²) = 12
ответ: 12.
1)сумма углов = 360
(угол 1 + угол 2) = (угол 3 + угол 4)=360/2=180
по условию усли (угол 1)=х, то (угол 2)=3*х.
Следовательно: х+3*х=180; х=4 - углы 1 и 3; 3*45=135 - углы 2 и 4.
2)Периметр=2*(a+b).
По условию если сторона1=х, то сторона2=х+4.
следовательно: 2*(х+х+4)=36; 2х=18; х=7 - сторона1 и сторона3; 7+4=11 - сторона2 и сторона4.
3)Т.к. в параллелограмме угол1=30, то противоположный ему угол3=30. а угол2=угол4=(360-2*30)/2=150.
проведем из угла б перпендикуляр BH к СD, угол CBD=180-30-90=60. Напротив угла в 30 градусов лежит катет равный половине гипотенузы.
Следовательно сторона BC=8*2=16 и сторона AD=16.
Т.к. Периметр=2*(a+b)=52, то a+b=26. Следовательно стороны AB=СD=26-16=10.