Объяснение: 1.1 так как ДЕ проведен из середин боковых сторон следовательно стороны AB и BC делятся пополам на отрезки по 1,5 см =3/2
1.2 он равен 3 так как в условии это уже указано(AB=BC=3)
1.3 ДЕ = 2 так как он средняя линия треугольника
2.1 Векторы равны так как направлены в одно сторону и имеют одинаковую длину( делятся пополам точкой Е)
2.2 Векторы равны так как направлены в одно сторону и имеют одинаковую длину(делятся пополам точкой D)
3.1 Они равны, но не сонаправлены(направлены в одну сторону)
3.2 Они равны и сонаправлены(направлены в одну сторону)
4. Противоположные векторы - имеют одинаковую длину и противоположное направление.
5.1 Они направлены в одну сторону так как угол между основанием о боковой стороной одинаковый
5.2 Так как ДЕ средняя линия то она параллельная основанию АЦ
6. Противоположно направленный вектор может быть любой длины главное чтобы в противоположную сторону.
7. Коллинеарные вектора - ненулевые вектора(нулевые это точка), которые лежат на одной прямой или они параллельны, вне зависимости от направления и длины.
1) Пусть a и b - два данных вектора. Если вектор р представлен в виде p=xa+yb, где х и у -некоторые числа, то говорят, что вектор р разложен по векторам a и b. Числа х и у называются коэффициентами разложения.
2) Отложим от точки О два единичных вектора, направление которых совпадает с направлениями координатных осей. Эти векторы обозначаются i и j и называются координатными векторами. Так как координатные вектора не коллинеарны, то любой вектор р можно представить в виде p=xi+yj. Числа х и у называются координатами вектора в данной системе координат. Для координат векторов справедливы следующие свойства: 1. Каждая координата суммы векторов равна сумме соответствующих координат. 2. Каждая координата разности векторов равна разности соответствующих координат. 3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число. 4. Каждая координата вектора равна разности соответствующих координат его конца и начала.
ответ: 1.1 AD=1,5; 1.2 CB=3; 1.3 DE=2;
2.1 BE= EC; 2.2 AD=DB;
3.1 Нет; 3.2 Да;
4.1 DB; 4.2 BE;
5.1 AD, DB; 5.2 AC;
6.1 CA; 6.2 CE;
7.1 DE; 7.2 BE;
Объяснение: 1.1 так как ДЕ проведен из середин боковых сторон следовательно стороны AB и BC делятся пополам на отрезки по 1,5 см =3/2
1.2 он равен 3 так как в условии это уже указано(AB=BC=3)
1.3 ДЕ = 2 так как он средняя линия треугольника
2.1 Векторы равны так как направлены в одно сторону и имеют одинаковую длину( делятся пополам точкой Е)
2.2 Векторы равны так как направлены в одно сторону и имеют одинаковую длину(делятся пополам точкой D)
3.1 Они равны, но не сонаправлены(направлены в одну сторону)
3.2 Они равны и сонаправлены(направлены в одну сторону)
4. Противоположные векторы - имеют одинаковую длину и противоположное направление.
5.1 Они направлены в одну сторону так как угол между основанием о боковой стороной одинаковый
5.2 Так как ДЕ средняя линия то она параллельная основанию АЦ
6. Противоположно направленный вектор может быть любой длины главное чтобы в противоположную сторону.
7. Коллинеарные вектора - ненулевые вектора(нулевые это точка), которые лежат на одной прямой или они параллельны, вне зависимости от направления и длины.