Дано :
Четырёхугольник ABCD - параллелограмм.
ВЕ = DF (Е ⊂ ВС, F ⊂ AD).
Доказать :
Четырёхугольник AECF - параллелограмм.
Доказательство :
В параллелограмме противоположные углы и противоположные стороны равны между собой (свойство параллелограмма).
Отсюда следует, что ∠В = ∠D, АВ = CD.
Рассмотрим ΔАВЕ и ΔCDF.
ВЕ = DF (по условию)
∠В = ∠D, АВ = CD (по выше сказанному) ⇒ ΔАВЕ = ΔCDF по двум сторонам и углу между ними (первый признак равенства треугольников).
Из равенства треугольников следует и равенство сторон АЕ и CF.
AD = BC (по свойству параллелограмма), но в своё очередь AD = BE + EC ; BC = DF + AF. Учитывая равенство из условия получаем, что ЕС = AF.
Если в четырёхугольнике противоположные стороны попарно равны, то этот четырёхугольник - параллелограмм (свойство параллелограмма).
АЕ = CF ; ЕС = AF (по выше сказанному) ⇒ четырёхугольник AECF - параллелограмм.
2) 3) в трапецию, в случае, если одна из пар противолежащих сторон параллельна плоскости проектирования
2) 3) в четырёхугольник без узкого определения, если ни одна из пар противолежащих сторон непараллельна плоскости проектирования
4) в трапецию, если стороны основания параллельны плоскости проектирования,
в неопределённый четырёхугольник , если ни одно основание непараллельно плоскости проектирования,
возможен вариант проектирования в квадрат или прямоугольник , если трапеция равнобедренная стороны основания параллельны плоскости проектирования и меньшая лежит ближе к плоскости проектирования.
1)2)3)4) проектируются в отрезки, если плоскость многоугольника перпендикулярна плоскости проектирования