Чтобы доказать равенство треугольников, в них надо найти три пары соответственно равных элементов. Сделайте себе подсказку.
1 признак. в нем вы должны найти по две равные стороны и углу между ними. И сделать вывод о равенстве треугольников.
2 признак. там надо доказать равенство стороны и двух прилежащих к ней углов.
3. самый легкий. Докажете, что три стороны одного равны трем сторонам другого, и треугольники окажутся равными.
Теперь. как искать эти элементы. Они могут быть равны по условию. по свойствам, например, в параллелограмме противоположные стороны равны. Углы. это могут быть вертикальные. Их надо уметь видеть. т.к. о равенстве вертикальных в условии сказано не будет. Дальше.. общую сторону тоже надо уметь подмечать.
Теперь по Вашему вопросу. Почему картинка одна. а применить к ней не один иногда, а несколько признаков можно? Это зависит от мастерства поиска Вашего. Вот что отыщете, то и используете при доказательстве. Отыщете по три равные стороны, окажется, что можно применить третий признак. А заметите, например здесь же две стороны и... ну пусть вертикальные углы, примените первый признак.
Объяснение:
Задание А
ΔАВС, ВD-биссектриса, ∠А=50° ,∠В=60°.
1)По т. о сумме углов треугольника ∠С=180°-50°-60°=70°.
Т.к. ВD-биссектриса, то ∠DВС=60°:2=30°
ΔВDС ,∠ВDС=180°-30°-70°=80°
2)В треугольнике ΔВDС против большего угла лежит большая сторона :70°>30°,∠С>∠ВDС и значит ВD>DС.
Задание В
1)ΔNMK , по т.о сумме углов треугольника ∠N=180°-75°-35°=70°.
2)NО-биссектриса, значит ∠ОNК=70°:2=35°. В ΔОNК два угла по 35°, значит он равнобедренный и ОК=NО.
3)ΔОМN , срвним углы 75°>30°, т.е ∠М>∠МNО и значит NО>МО. Но NО=ОК, значит ОК>МО.
Задание С
1)ΔАВС, ∠А=90°-70°=20° по св. острых углов прямоугольного треугольника.
2)DC=BC, значит ΔDCВ-равнобедренный и прямоугольный и ∠СВD=∠DВC=(180°-90°):2=45°.
Значит ∠DВА=70°-45°=25°
3)∠АDВ=180°-45°=135° по т. о смежных углах
4) В ΔВDC-прямоугольном ∠С=90° самый большой, значит против него лежит большая сторона DВ>DC