ответ: Р=38см
Объяснение: обозначим вершины треугольника А В С а точки касания Д К М. Причём Д лежит на АВ; К- на ВС; М- на АС. Стороны треугольника являются касательными к вписанной окружности, и отрезки касательных, соединяясь в одной вершине равны, от точки касания до вершины треугольника. Поэтому ВД=ВК=7см; АД=АМ=5см; СК=СМ=5см. Из этого следует что АМ=СМ=5см. Теперь сложим эти отрезки сторон:
АВ=ВС=5+7=12см; АС=7+7=14см. Зная все стороны треугольника найдём его периметр: Р=12+12+14=24+14=38см
Объяснение:
№1 ∠CBA=60°, (тк сумма углов в прямоугольном Δ 90, и 90-30=60)
∠СВЕ 60:2=30°(ВЕ-биссектрисса)
СЕ=1/2 *6=3(тк по теореме против угла в 30° лежит половина гипотенузы)
ВС=√6²-√3²=√36-√9=√27 (по теореме пифагора)
ВА=2*√27=2√27(тк против угла 30° лежит половина гипотенузы)
АС=√(2√27)²-√(√27)²=√4*27-√27=√108-√27=√81=9(по теореме пифагора)
∠ВАС=30°
№2
ΔАВС-равнобедренный(тк ∠САВ=∠СВА=45° (тк по теореме в прямоугольнов Δ сумма острых углов =90°, а 90-45=45))
СД-высота , биссектриса и медиана, тк в равнобедренном Δ высота=медиана=биссектриса⇒по правилу медианы СД=ДА=4см
АВ=2*АД (тк СД как медиана делит АВ на 2 равные части) АВ=8см
ответ: 34с
Объяснение:
АВ=ВС= 5+7=12 СМ
АС= 5+5=10 СМ
ПЕРИМЕТР ДОРІВНЮЄ
Р = 12+12+10=34 см