Объяснение:
1) Р Δ = 30 см.
Пусть а, b, с - стороны треугольника.
Если а = 20 см, то а + b + с = Р Δ ;
20 + b + с = 30; b + с = 30 - 20; b + с = 10 (см).
Для сторон треугольника должна выполняться неравенство треугольника:
а < b + с (20> 10); b <а + с; с <b + а.
Поскольку неравенство не выполняется, то сторона
не может равняться 20 см.
2) Р Δ = 30 см.
Пусть а, b, с - стороны треугольника.
Если а = 15 см, то: а + b + с = Р Δ ;
15 + b + с = 30; b + с = 30 - 15; b + с = 15 (см).
Для сторон треугольника должна выполняться неравенство треугольника:
a < b + c (15 = 15); b <а + с; с <b + а.
Поскольку неравенство не выполняется, то сторона
не может равняться 15 см.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.