В решении.
Пошаговое объяснение:
1) Найти значение функции в заданной точке.
Это значит, найти значение у при заданном значении х.
у(х) = √х-2, х=6
Подставить в уравнение значение х и найти значение у:
у(6)= √6-2
у(6)= √4
у(6)= 2;
При х=6 у=2;
2) Записать степени в виде корня:
Числитель степени - показатель степени подкоренного выражения.
Знаменатель степени - показатель степени корня.
а) m в степени 3/6 = корень 6 степени из m³;
б) n в степени 3/5 = корень 5 степени из n³.
3) Найти область определения функции.
Область определения функции - это значения х, которые она существует. Обозначается D(f) или D(y).
а) f(x) = 7/(x-3)
В данном случае по ОДЗ х не может быть равен 3, чтобы в знаменателе не было нуля.
Значит, область определения данной функции при х > 3,
запись: D(f)=х∈(3; +∞).
б) h(x) = √x+2;
Подкоренное выражение должно быть больше, либо равно нулю.
х+2 >= 0
x >= -2
D(h)=х∈[-2; +∞).
Область определения (значения х, при которых данная функция существует) от х= -2 до + бесконечности, х= -2 входит в область определения, скобка квадратная.
Если скорость течения реки составляет 1/7 часть от собственной скорости катера, значит, собственная скорость катера в 7 раз больше скорости течения реки. То есть,
Vс = Vт*7 = 1,5*7 = 10,5 км/ч,
где Vс – собственная скорость катера;
Vт – скорость течения реки.
Если катер движется против течения реки, из его собственной скорости следует вычесть скорость течения реки. Тогда, с учетом времени (2 ч 15 мин = 2+15/60 ч), проведенным катером в пути:
S = V*t = (Vc-Vт)*t1 = (10,5-1,5)*2,25 = 20,25 км,
где S – расстояние, которое пройдет катер, двигаясь против течения;
t1 – время, затраченное на движение катера против течения.
Если катер движется по течению реки, к его собственной скорости следует прибавить скорость течения реки. Тогда, с учетом времени (3 ч 25 мин = 3+25/60 ч), проведенным катером в пути:
S = V*t = (Vc+Vт)*t1 = (10,5+1,5)*(205/60) = 41 км.
ответ. 20,25 км против течения; 41 км по течению.
k+34=73
k=73-34
k=39
2) 2y+3y-4y-29=29
y-29=29
y=29+29
y=58