Точка С находится на оси ординат, значит имеет координаты С(0;y;0). Вектор АС(-2;y-5;-8). Модуль вектора (его длина) |AC|=√(4+(y-5)²+64). Вектор ВС(-6;(y-1);0). Модуль вектора (его длина) |BC|=√(36+(y-1)²+0). Модули (длины) этих векторов равны по условию. Значит √(4+(y-5)²+64)=√(36+(y-1)²+0). Возведем обе части в квадрат: 4+(y-5)²+64=36+(y-1)² или 4+y²-10y+25+64=36+y²-2y+1 8y=56. y=7. ответ: С(0;7;0)
Проверим: |AC|=√(4+4+64)=√72, |BC|=√(36+36+0)=√72. То есть точка С находится на равном расстоянии (равноудалена) от точек А и В.
Даны точки A (– 1; 3), B (1; 5), C (3; 3), D (1; 1).
Если не известно, какая фигура заданный четырёхугольник, то проще его разделить на 2 треугольника: АВС и АСД. Найти их площади и сложить.
Вектор a (АВ) Вектор b (АС)
x y x y
2 2 4 0
4 4 16 0 Квадраты
8 16 Сумма квадратов
Модуль =√8=2√2 ≈ 2,8284 4
Скалярное произведение ABxAC = (2*4 + 2*0) = 8.
cos ВAС = 0,707106781
Угол ВAС = 0,7854 радиан
45 градусов.
Вектор e (АD)
x y
2 -2
4 4
8
2,828427125
Скалярное произведение AСxAD = 8
cos CAD= 0,707106781
Угол CAD = 0,7854 радиан
45 градусов.
S(ABCD) = (1/2)*(AB*AC*sinA+AC*AD*sinCAD)
S(ABCD) = 0,5 *(8+8) = 8.