Через конечную точку A диагонали AC=23,2 ед. изм. квадрата ABCD проведена прямая перпендикулярно диагонали AC. Проведённая прямая пересекает прямые CB и CD в точках M и N соответственно. Определи длину отрезка MN.
Пусть в тр-ках авс и а (1)в (1)с (1) 1) равны медианы вк и в (1)к (1) , 2) угол авк =углу а (1)в (1)к (1) 3) угол свк = углу с (1)в (1)к (1) доказать, что тр-к авс = тр-ку а (1)в (1)с (1) доказательство в тр-ке авс продолжим медиану вк и отложим км =вк и точку м соединим с точками а и с аналогичные построения сделаем в тр-ке а (1)в (1)с (1), тогда вм =в (1)м (1) 1) тр-к акв =тр-ку скм ( по двум сторонам вк=км и ак=кс и углу между ними -они вертикальные) 2) аналогично тр-к а (1)к (1)в (1) =тр-ку с (1)к (1)м (1) отсюда следует 3) ав=мс =а (1)в (1) =м (1)с (1), < авм = < вмс =< а (1)в (1)м (1) = < в (1)м (1)с (1) 4) тогда тр-к всм = тр-ку в (1)с (1)м (1) по стороне вм =в (1)м (1) и двум прилежащим углам 5) отсюда вс =в (1)с (1) и ав=мс =а (1)в (1) =м (1)с (1), 6) проэтому тр-к авс = тр-ку а (1)в (1)с (1) по двум сторонам и углу между ними второй способ состоит в том, что по теореме " площадь тр-ка равна половине произведения двух сторон на синус угла между ними выражают стороны ав и вс через медиану вк и углы авк и свк применяя соотношение s (авс) = s (авк) + s (свк) и доказывают, что ав= а (1)в (1) и вс= в (1)с (1)
Рассмотрим треугольник АСN:
Угол А равен 90° (MN перпендикулярна АС), угол АСN = 45° (так как диагонали квадрата являются биссектрисами упрямых углов), значит, угол CNA = 180° - (90° + 45°) = 45°.
Значит, треугольник АСN равнобедренный (в равнобедренном треугольнике углы при основании равны). Следовательно, АС = AN = 23.
Аналогично доказываем, что треугольник АСМ равнобедренный, и значит, АС = АМ = 23.
Отсюда следует, что MN = 23 + 23 = 46.
ответ: MN = 46 ед.