В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
a b c p 2p S
4 8 5 8.5 17 8.18153
cos A= (АВ²+АС²-ВС²) / (2*АВ*АС)
cos A = 0.9125
cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС)
cos B = -0.575
cos C= (АC²+ВС²-АD²) / (2*АC*ВС)
cos С = 0.859375
Аrad = 0.421442 Brad = 2.1834 Сrad = 0.53675
Аgr = 24.14685 Bgr = 125.0996 Сgr = 30.75352.
2) Длины высот:
АА₂ = 2S / BС = 4.090767
BB₂ = 2S / АС = 2.04538
CC₂ = 2S / ВА = 3.272614.
3) Длины медиан:
Медиана, соединяющая вершину треугольника А с серединой стороны а равна
a b c
4 8 5
ма мв мс
6.364 2.12132 5.80948
4) Длины биссектрис:
Биссектриса угла А выражается:
a b c
4 8 5
βa βb βc
6.0177 2.04879 5.14242.
Деление сторон биссектрисами:
a b c
ВК КС АЕ ЕС АМ МВ
1.53847 2.46154 4.4444 3.5556 3.333 1.6667.
Деление биссктрис точкой пересечения
βa βb βc
АО ОК ВО ОЕ СО ОМ
4.601799 1.41593 1.08465 0.96413 3.62994 1.512475
Отношение отрезков биссектрис от точки пересечения:
АО/ОК ВО/ОЕ СО/ОМ
3.25 1.125 2.4
5) Радиус вписанной в треугольник окружности равен:
r = 0.9625334.
Расстояние от угла до точки касания окружности:
АК=АМ BК=BЕ CМ=CЕ
4.5 0.5 3.5
6) Радиус описанной окружности треугольника, (R):
R = 4.889058651.