1. По данным рисунка длина AD равна: а) 7; б) 5; в) 6 2. Квадрат вписан в окружность диаметра 8 см. Периметр квадрата равен: а) 32см; б) 16√2см; в) 16см
Очка пересечения - т. О нарисуйте это. так будет понятнее. сначала докажем, что треугольник AOD = треульнику BOC. Есть признак равенства треугольников такой, что если две стороны одного треугольника и угол между ними равны двум сторронам и углу между ними второго треугольника, то треугольники эти равны. (BO=OD и AO=OC) а раз эти треугольники равны, значит их стороны AD и BC равны. Аналогично для треугольников AOB и COD т. е. из них стороны AB и CD равны. в итоге: в треугольниках ABC и CDA равны три стороны. Это третий признак равенства двух треугольников. (AC - это общая сторона) Всё! )
1.Найти радианную меру угла, если его градусная мера равна- 10°, 30°, 150°.
радианная - z
градусная - g
g/180 = z/π
z = g·π/180
z₁ = 10*π/180 = π/18
z₂ = 30*π/180 = π/6
z₃ = 150*π/180 = 5π/6
2. Найти градусную меру угла, если его радианная мера равна: п/5, 2п/3, 7п/6.
g = 180*z/π
g₁ = 180/5 = 36°
g₂ = 180*2/3 = 120°
g₃ = 180*7/6 = 210°
3.Найти длину дуги окружности, радиуса 2см, отвечающей центральному углу 60°.
l = π·r·g/180
l = π*2*60/180 = 2π/3 ≈ 2,094 см
Вариант II
1.Найти радианную меру угла, если его градусная мера равна- 20°, 50°, 160°.
z₁ = 20*π/180 = π/9
z₂ = 50*π/180 = 5π/18
z₃ = 160*π/180 = 8π/9
2. Найти градусную меру угла, если его радианная мера равна: п/8, 3п/2, 5п/4.
g₁ = 180/8 = 22,5°
g₂ = 180*3/2 = 270°
g₃ = 180*5/4 = 225°
3.Найти длину дуги окружности, радиуса 3см, отвечающей центральному углу 80°.
l = π·r·g/180
l = π*3*80/180 = 4π/3 ≈ 4,189 cм