Дано:
a=7см
b=24см
Найти:
Sin, Cos, tg острого угла - ?
с=√7²+24²=√49+576=√625=25 см
против большей стороны лежит больший угол, и наоборот, против меньшей - меньший угол B < углу A ⇒ ищем Sin, Cos, tg острого угола А (см рисунок)
Синус - это отношение противолежащего катета к гипотенузе ⇒ SinA=BC/AB=24/25
Косинус - это отношение прилежащего катета к гипотенузе ⇒ CosA=AC/AB=7/25
Тангенс - это отношение противолежащего катета к прилежащему или отношение синуса к косинусу ⇒ tgA=BC/AC=24/7 или tgA=SinA/CosA=(24/25)/(7/25)=24/7
ответ: Sin большего острого угла равен 24/25, Cos большего острого угла равен 7/25, tg большего острого угла равен 24/7
Дано:
a=7см
b=24см
Найти:
Sin, Cos, tg острого угла - ?
с=√7²+24²=√49+576=√625=25 см
против большей стороны лежит больший угол, и наоборот, против меньшей - меньший угол B < углу A ⇒ ищем Sin, Cos, tg острого угола А (см рисунок)
Синус - это отношение противолежащего катета к гипотенузе ⇒ SinA=BC/AB=24/25
Косинус - это отношение прилежащего катета к гипотенузе ⇒ CosA=AC/AB=7/25
Тангенс - это отношение противолежащего катета к прилежащему или отношение синуса к косинусу ⇒ tgA=BC/AC=24/7 или tgA=SinA/CosA=(24/25)/(7/25)=24/7
ответ: Sin большего острого угла равен 24/25, Cos большего острого угла равен 7/25, tg большего острого угла равен 24/7
В прямоугольном треугольнике ABC, угол А=90 градусов, АВ=20 см, высота АД=12 см.
Найти: АС и COS угла С.
ДВ"=АВ"-АД" = 400-144=256
ДВ=16
треугольники АВС и ДВА подобны по первому признаку подобия (два угла равны), следовательно ДВ/АВ=АВ/СВ
16/20=20/СВ
СВ=20*20:16=25
АС"=СВ"-АВ"=25"-20"=625-400=225
АС=15
мы нашли АС=15,
теперь ищем CosC
CosC=АС/СВ=15/25=3/5
CosC=3/5
ответ: CosC=3/5, АС=15см