1.Два кола мають зовнішній дотик. Відстань між їх центрами дорівнює 30 см. Знайдіть радіуси кіл, якщо один з них удвічі більший за інший. 2.Пряма МК- дотична до кола, точка N –точка дотику, точка О – центр кола. Знайдіть кут ОМК, якщо кут МОN= 86 *
Дана трапеция АВСD, вокруг которой описана окружность.
Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180° (π радиан).
Из этого следует, что трапеция равнобедренная.
АВ=СD=15 см
Площадь трапеции равна произведению ее высоты на полусумму оснований.
Известно только одно основание - оно равно диаметру окружности АD=2 r=25 cм Так как центр описанной окружности лежит на большем основании трапеции, диаметр окружности, ее боковая сторона и диагональ образуют прямоугольный треугольник с гипотенузой, равной диаметру.
Высоту трапеции h = ВD найдем по формуле высоты прямоугольного треугольника, проведенного из прямого угла к гипотенузе: h = 2s/a , где а - гипотенуза. Площадь треугольника пока не известна.
Для ее нахождения нужно найти длину второго катета -диагонали трапеции ВD. ВD=√(АD²-АВ²)=√(25²-15²)=√400=20 см 2s ABD=АВ·ВD=15·20=300 cм² h =300:25= 12 см Отрезок от А до основания Н высоты ВН трапеции равен в равнобедренной трапеции полуразности оснований. АН найдем из прямоугольного треугольника АВН по теореме Пифагора. Полуразность оснований 9 см Разность оснований 18 см Меньшее основание ВС= 25 -18=7 см S трапеции = 12·(25+7):2 =192 см²
Уравнение окружности в общем виде: ( х - а)^2 + (у - в)^2 = R^2, где (а,в) - координаты центра окружности, R - радиус. Если центр окружности лежит на биссектрисе, значит координаты равны у = х. Пусть у = х = t. Точка (1; 8) принадлежит окружности, значит: (1-t)^2 + (8-t)^2 = 5^2; 1 - 2t + t^2 + 64 - 16t + t^2 = 25; 2t^2 - 18t + 40 = 0; t^2 - 9t + 20 = 0; t = 4 или t = 5, уравнений, удовлетворяющих данному условию два: (х - 5)^2 + (y - 5)^2 = 5^2 или (х -4)^2 + (y - 4)^2 = 5^2
Дана трапеция АВСD, вокруг которой описана окружность.
Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180° (π радиан).
Из этого следует, что трапеция равнобедренная.
АВ=СD=15 см
Площадь трапеции равна произведению ее высоты на полусумму оснований.
Известно только одно основание - оно равно диаметру окружности
АD=2 r=25 cм
Так как центр описанной окружности лежит на большем основании трапеции,
диаметр окружности, ее боковая сторона и диагональ образуют прямоугольный треугольник с гипотенузой, равной диаметру.
Высоту трапеции h = ВD найдем по формуле высоты прямоугольного треугольника, проведенного из прямого угла к гипотенузе:
h = 2s/a , где а - гипотенуза.
Площадь треугольника пока не известна.
Для ее нахождения нужно найти длину второго катета -диагонали трапеции ВD.
ВD=√(АD²-АВ²)=√(25²-15²)=√400=20 см
2s ABD=АВ·ВD=15·20=300 cм²
h =300:25= 12 см
Отрезок от А до основания Н высоты ВН трапеции равен в равнобедренной трапеции полуразности оснований.
АН найдем из прямоугольного треугольника АВН по теореме Пифагора.
Полуразность оснований 9 см
Разность оснований 18 см
Меньшее основание
ВС= 25 -18=7 см
S трапеции = 12·(25+7):2 =192 см²