Стороны оснований правильной усечённой четырехугольной пирамиды равны 8 см и 2 см. Высота пирамиды 4 см. Найти диагональ пирамиды, S боковой, S полной.
Минут 5 ломал голову, с чего вообще начать) Потом вспомнил про подобие треугольников.
1. Проведём отрезки BD и AC (см. рисунок). Треугольники, образованные таким образом, будут подобными, поскольку у них равные углы при вершине K, а также угол C равен углу B (потому что они опираются на одну и ту же дугу), из чего по первому признаку подобия треугольников следует их подобие.
2. Значит, стороны треугольников пропорциональны. Очевидно, что если их сумма в два раза больше суммы другого треугольника, то и стороны тоже в два раза больше:
По условиям задачи дано AB = CD, BC = AD. Чтобы доказать равенство треугольника ABC и треугольника ACD, нужно выделить признак равенства треугольников по трем сторонам. Две стороны у нас равны, а третья - AC - общая, это подходит под формулировку третьего признака равенства треугольников. Признак равенства треугольника звучит так: если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны. AB = CD, BC = AD, AC - общая => треугольник ABC равен треугольнику ACD, что и требовалось доказать.
1. Проведём отрезки BD и AC (см. рисунок). Треугольники, образованные таким образом, будут подобными, поскольку у них равные углы при вершине K, а также угол C равен углу B (потому что они опираются на одну и ту же дугу), из чего по первому признаку подобия треугольников следует их подобие.
2. Значит, стороны треугольников пропорциональны. Очевидно, что если их сумма в два раза больше суммы другого треугольника, то и стороны тоже в два раза больше:
3. Их произведение